
Motivation for Sublinear-Time Algorithms 

Massive datasets 

• world-wide web 

• online social networks 

• genome project 

• sales logs 

• census data 

• high-resolution images 

• scientific measurements 

Long access time 

• communication bottleneck (slow connection) 

• implicit data (an experiment per data point) 
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What Can We Hope For? 

• What can an algorithm compute if it 

– reads only a sublinear portion of the data? 

– runs in sublinear time? 

 

• Some problems have exact deterministic solutions 

 

• For most interesting problems algorithms must be 

– approximate 

– randomized 
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A Sublinear-Time Algorithm 
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B L A - B L A - B L A - B L A - B L A - B L A - B L A - B L A 

approximate answer 

 

sublinear-time algorithm 

? L ? B ? L ? A 

    Quality of 

approximation  
 

Resources 
• number of queries 

• running time 



Types of Approximation 

Classical approximation 

• need to compute a value 
 output should be close to the desired value 

 example: average 

 

Property testing 

• need to answer YES or NO 
 Intuition: only require correct answers on two sets of instances that are 

very different from each other 
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Classical Approximation 
  

A Simple Example 



Approximate Diameter of a Point Set [Indyk] 

 

Input:  𝑚 points, described by a distance matrix 𝐷  

– 𝐷𝑖𝑗   is the distance between points 𝑖 and 𝑗   

– 𝐷 satisfies triangle inequality and symmetry 

(Note:  input size is 𝑛 =  𝑚2) 

Let 𝑖, 𝑗  be indices that maximize 𝐷𝑖𝑗 . 

Maximum 𝐷𝑖𝑗  
is the diameter. 

• Output: (𝑘, ℓ) such that 𝐷𝑘ℓ   
 𝐷𝑖𝑗 

/2   

 

 



Algorithm and Analysis 

 
1. Pick 𝑘 arbitrarily 

2. Pick ℓ to maximize 𝐷𝑘ℓ 

3. Output (𝑘, ℓ) 

• Approximation guarantee 
𝐷𝑖𝑗 ≤ 𝐷𝑖𝑘 + 𝐷𝑘𝑗  (triangle inequality) 

      ≤ 𝐷𝑘ℓ + 𝐷𝑘ℓ (choice of ℓ + symmetry of 𝐷) 

      ≤ 2𝐷𝑘ℓ  

• Running time:  𝑂(𝑚)  =  𝑂(𝑚 = 𝑛) 
 

𝑖 

𝑗 

𝑘 

ℓ 

A rare example of a deterministic  

sublinear-time algorithm 

 Algorithm (𝑚,𝐷) 



Property Testing 
  



Property Testing: YES/NO Questions 

Does the input satisfy some property? (YES/NO) 
 

“in the ballpark” vs. “out of the ballpark” 

 

 

 

Does the input satisfy the property  
or is it far from satisfying it? 

• sometimes it is the right question (probabilistically checkable proofs (PCPs)) 

• as good when the data is constantly changing (WWW) 

• fast sanity check to rule out inappropriate inputs (airport security questioning) 
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Property Tester 

Close to YES 

Far from 

 YES 

YES 

Reject with 
probability      2/3  

Don’t care  

  

Accept with 
probability ≥ 𝟐/𝟑  



Property Tester Definition 

Probabilistic Algorithm 

YES Accept with 
probability ≥ 𝟐/𝟑 

Reject with 
probability     2/3  

NO 



         far = differs in many places    𝜀-                                               (≥ 𝜀 fraction of places) 

    𝜀 



Randomized Sublinear 
Algorithms  

  
Toy Examples 



 Test (𝑛, 𝑤) 

Property Testing: a Toy Example 

Input: a string 𝑤 ∈ 0,1 𝑛 

Question: Is  𝑤 = 00…0? 

 Requires reading entire input. 

Approximate version:  Is 𝑤 = 00…0 or 

    does it have ≥ 𝜀𝑛 1’s (“errors”)? 

 

1. Sample 𝑠 = 2/𝜀 positions uniformly and independently at random 

2. If 1 is found, reject; otherwise, accept 

Analysis: If 𝑤 = 00…0, it is always accepted.  

If 𝑤 is 𝜀-far, Pr[error] = Pr*no 1’s in the sample+≤ 1 − 𝜀 𝑠 ≤ 𝑒−𝜀𝑠 = 𝑒−2 <
1

3
 

 

If a test catches a witness with probability ≥ 𝑝,  

then s =
2

𝑝
 iterations of the test catch a witness  with probability ≥ 2/3.  
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Used: 1 − 𝑥 ≤ 𝑒−𝑥 

Witness Lemma 

0 0 0 1 … 0 1 0 0 



Randomized Approximation: a Toy Example 

Input: a string 𝑤 ∈ 0,1 𝑛 

Goal: Estimate the fraction of 1’s in 𝑤 (like in polls) 

It suffices to sample 𝑠 = 1 ⁄ 𝜀2 positions and output the average                         
to get the fraction of 1’s ±𝜀 (i.e., additive error 𝜀) with probability ¸ 2/3 

 

 

 

 

Yi = value of sample 𝑖. Then E[Y] = ∑
𝑠

𝑖=1
E,Yi- = 𝑠 ⋅ (fraction of 1’s in 𝑤) 

Pr (sample average) − fraction of 1′s in 𝑤 ≥ 𝜀 = Pr Y − E Y ≥ 𝜀𝑠  

≤ 2e−2𝛿
2/𝑠 = 2𝑒−2 < 1/3 
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Let Y1, … , Ys be independently distributed random variables in [0,1] and  

let Y = ∑
𝑠

𝑖=1
Yi (sample sum). Then Pr Y − E Y ≥ δ ≤ 2e−2𝛿

2/𝑠. 

0 0 0 1 … 0 1 0 0 

Hoeffding Bound 

Apply Hoeffding Bound with 𝛿 = 𝜀𝑠  substitute 𝑠 = 1 ⁄ 𝜀2 



Property Testing 
  

Simple Examples 



Testing Properties of Images 

15 



Pixel Model 
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Query: point (𝑖1, 𝑖2) 

Answer: color of (𝑖1, 𝑖2) 

Input: 𝑛 × 𝑛 matrix of pixels 

(0/1 values for black-and-white pictures) 



Testing if an Image is a Half-plane [R03]  

 

 

 

A half-plane or  

𝜀-far from a half-plane? 

 

  O(1/𝜀) time 
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Half-plane Instances 
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A half-plane 1

4
-far from a half-plane 



Half-plane Instances 
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A half-plane 1

4
-far from a half-plane 



Half-plane Instances 
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A half-plane 1

4
-far from a half-plane 



Half-plane Instances 
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A half-plane 1

4
-far from a half-plane 



Half-plane Instances 
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A half-plane 1

4
-far from a half-plane 



Half-plane Instances 
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A half-plane 1

4
-far from a half-plane 



Half-plane Instances 
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A half-plane 1

4
-far from a half-plane 



Strategy 

 

“Testing by implicit learning” paradigm 

 

• Learn the outline of the image by querying a few pixels. 

• Test if the image conforms to the outline by random sampling, 
and reject if something is wrong. 
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Half-plane Test 
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Claim. The number of sides with different 
corners is  0, 2, or 4. 

    

Algorithm 
1. Query the corners. 

? ? 

? ? 



Half-plane Test: 4 Bi-colored Sides 
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Claim. The number of sides with different 
corners is  0, 2, or 4. 

    Analysis 

• If it is 4, the image cannot be a half-plane. 

Algorithm 
1. Query the corners. 
2. If the number of sides with different corners is 4, reject. 



Half-plane Test: 0 Bi-colored Sides 
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Claim. The number of sides with different 
corners is  0, 2, or 4. 

    Analysis 

• If all corners have the same color, the image is a 
half-plane if and only if it is unicolored. 
 

Algorithm 
1. Query the corners. 
2. If all corners have the same color 𝑐, test if all pixels have color 𝑐  
        (as in Toy Example 1). 

? 

? 

? 
? 

? 

? 



Half-plane Test: 2 Bi-colored Sides 
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Claim. The number of sides with different 
corners is  0, 2, or 4. 

    

Algorithm 
1. Query the corners. 
2. If # of sides with different corners is 2, on both sides find 2 different 

pixels within distance 𝜀𝑛/2 by binary search. 
3. Query 4/𝜀 pixels from 𝑊 ∪ 𝐵 
4. Accept iff all 𝑊pixels are white and all 𝐵 pixels are black. 

Analysis 

• The area outside of 𝑊 ∪𝐵  has ≤ 𝜀𝑛2/2 pixels.  

• If the image is a half-plane, W contains only 

white pixels and B contains only black pixels. 

• If the image is 𝜀-far from half-planes, it has  

≥ 𝜀𝑛2/2 wrong pixels in 𝑊 ∪𝐵. 
• By Witness Lemma, 4/𝜀 samples suffice to 

catch a wrong pixel. 

? ? 
𝜀𝑛/2 

? ? 
𝜀𝑛/2 

𝑊 

𝐵 



Testing if an Image is a Half-plane [R03]  

 

 

 

A half-plane or  

𝜀-far from a half-plane? 

 

  O(1/𝜀) time 
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Other Results on Properties of Images 

• Pixel Model 
Convexity [Berman Murzabulatov R] 

Convex or 𝜀-far from convex? 

  O(1/𝜀) time 

 

Connectedness [Berman Murzabulatov R] 

Connected or 𝜀-far from connected? 

  O(1/𝜀3/2 log 1/𝜀  ) time 

 

Partitioning [Kleiner Keren Newman 10] 

Can be partitioned according to a template  

or is 𝜀-far? 

  time independent of image size 

• Properties of sparse images [Ron Tsur 10] 
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Testing if a List is Sorted 

Input: a list of n numbers  x1 , x2 ,...,  xn 

•  Question: Is the list sorted? 

 Requires reading entire list: (n) time  

• Approximate version: Is the list sorted or ²-far from sorted? 

      (An ² fraction of xi ’s have to be changed to make it sorted.) 

      [Ergün Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01]: O((log n)/²) time  

                                                                                               (log n) queries 

• Attempts: 

      1. Test:  Pick a random i and reject if  xi > xi+1 . 

          Fails on:  1 1 1 1 1 1 1 0 0 0 0 0 0 0               Ã 1/2-far from sorted 

 

      2. Test:  Pick random i < j and reject if xi > xj. 

          Fails on:  1 0 2 1 3 2 4 3 5 4 6 5 7 6             Ã 1/2-far from sorted 
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1
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Is a list sorted or ²-far from sorted? 

Idea:  Associate positions in the list with vertices of the directed line. 

 

          
 

 

Construct a graph (2-spanner) 

• by  adding a few “shortcut” edges (i, j) for i < j 

• where each pair of vertices is connected by a path of length at most 2 
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… … 

≤ n log n edges 

 1   2    3            …                                                    n-1  n 



Is a list sorted or ²-far from sorted? 

  

Pick a random edge (xi ,xj) from the 2-spanner and reject if xi > xj.  

 

  

                         1             2            5            4            3            6             7 
Analysis: 

• Call an edge (xi ,xj) violated if xi > xj , and good  otherwise. 

• If xi  is an endpoint of a violated edge, call it bad. Otherwise, call it good. 

 

Proof: Consider any two good numbers, xi and xj.  

            They are connected by a path of (at most) two good edges (xi ,xk), (xk ,xj). 

              )  xi ≤ xk  and xk ≤ xj 

                      ) xi ≤ xj 
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1
2

1
2

5            4            3 
xi                                                                                               xj xk 

Claim 1. All good numbers xi  are sorted. 
    

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99] 



Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99] 

Is a list sorted or ²-far from sorted? 

  

Pick a random edge (xi ,xj) from the 2-spanner and reject if xi > xj.  

 

  

                         1             2            5            4            3            6             7 
Analysis: 

• Call an edge (xi ,xj) violated if xi > xj , and good  otherwise. 

• If xi  is an endpoint of a bad edge, call it bad. Otherwise, call it good. 

 

 

 

Proof: If a list is ²-far from sorted, it has  ¸ ² n bad numbers.  (Claim 1) 

• Each violated edge contributes 2 bad numbers.   

• 2-spanner has  ¸ ² n/2 violated edges out of · n log n. 
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1
2

1
2

5            4            3 
xi                                                                                               xj xk 

Claim 1. All good numbers xi  are sorted. 
    
Claim 2. An ²-far list violates  ¸ ² /(2 log n) fraction of edges in 2-spanner. 
    



Is a list sorted or ²-far from sorted? 

  

Pick a random edge (xi ,xj) from the 2-spanner and reject if xi > xj.  

 

  

                         1             2            5            4            3            6             7 
Analysis: 

• Call an edge (xi ,xj) violated if xi > xj , and good  otherwise. 

 

By Witness Lemma, it suffices to sample (4 log n )/² edges from 2-spanner. 

 

Sample (4 log n)/ ² edges (xi ,xj) from the 2-spanner and reject if xi > xj.  

Guarantee: All sorted lists are accepted. 

All lists that are ²-far from sorted are rejected with probability ¸2/3. 

Time: O((log n)/²)                
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1
2

1
2

5            4            3 
xi                                                                                               xj xk 

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99] 

Algorithm 

Claim 2. An ²-far list violates  ¸ ² /(2 log n) fraction of edges in 2-spanner. 
    



Basic Properties of 
Functions 
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f(000) 

f(111)  f(011) 

f(100) 

f(101) 

f(110) f(010) 

f(001) 

  Boolean Functions 𝒇 ∶ 𝟎, 𝟏 𝒏 → *𝟎, 𝟏+   

Graph representation: 

𝑛-dimensional hypercube 

 

 

 

 

•   2𝑛   vertices: bit strings of length 𝑛 

• 2𝑛−1𝑛  edges: (𝑥, 𝑦) is an edge if 𝑦 can be obtained from 𝑥 by 
increasing one bit from 0 to 1 

 

• each vertex 𝑥 is labeled with 𝑓(𝑥) 

 

001001 

011001          

𝑥 

𝑦 



Monotonicity of Functions 
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[Goldreich Goldwasser Lehman Ron Samorodnitsky,  

 Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 

 Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky] 

• A function 𝑓 ∶ 0,1 𝑛 → *0,1+ is monotone  

     if increasing a bit of 𝑥 does not decrease 𝑓(𝑥).  

 

• Is 𝑓 monotone or 𝜀-far from monotone 
      (𝑓 has to change on many points to become monontone)? 

– Edge 𝑥𝑦 is violated by  𝑓  if  𝑓 (𝑥)  >  𝑓 (𝑦). 

 

Time:  

– 𝑂(𝑛/𝜀), logarithmic in the size of the input, 2𝑛 

– Ω( 𝑛/𝜀) for restricted class of tests 

– Recent: Θ( 𝑛/𝜀2) for nonadaptive tests  

[Khot Minzer Safra 15, Chen De Servidio Tang 15] 

0 

0 0 

0 1 

1 

1 

1 

1 

1 0 

0 0 

0 

1 

1 

monotone 

1

2
-far from monotone 



Monotonicity Test [GGLRS, DGLRRS] 
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Idea: Show that functions that are far from monotone violate many edges.  

 

 

 

Analysis 

• If 𝑓 is monotone, EdgeTest always accepts.  

• If 𝑓 is 𝜀-far from monotone, by Witness Lemma, it suffices to show that 

≥ 𝜀/𝑛 fraction of edges (i.e., 
𝜀

𝑛
⋅ 2𝑛−1𝑛 = 𝜀2𝑛−1 edges) are violated by 𝑓. 

– Let 𝑉(𝑓) denote the number of edges violated by 𝑓. 

     Contrapositive:  If 𝑉(𝑓) < 𝜀 2𝑛−1,               
 𝑓 can be made monotone by changing  < 𝜀 2𝑛 values. 

 

 

 

EdgeTest (𝑓, ε) 

1. Pick 2𝑛/𝜀 edges (𝑥, 𝑦) uniformly at random from the hypercube. 

2. Reject if some 𝑥, 𝑦  is violated (i.e. 𝑓 𝑥 > 𝑓(𝑦)). Otherwise,  accept. 

Repair Lemma 

  𝑓 can be made monotone by changing  ≤ 2 ⋅ 𝑉(𝑓) values.  



Repair Lemma: Proof Idea 
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Proof idea: Transform f into a monotone function by 
repairing edges in one dimension at a time. 
 

 

 

Repair Lemma 

  𝑓 can be made monotone by changing  ≤ 2 ⋅ 𝑉(𝑓) values.  
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Repairing Violated Edges in One Dimension 

0 0 0 0 

1 

1 

1 

0 

0 

0 

0 

0 

1 

1 

0 

1 

Swapping horizontal 

dimension 

Swap violated edges 10  in one dimension to  01.  

Let 𝑉𝑗 = # of violated edges in dimension 𝑗 

 

 

Enough to prove the claim for squares 

i 

j 

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗  for all dimensions 𝑗 ≠ 𝑖 

 
    



Proof of The Claim for Squares 

 

 

 

 

 

 

 

 

 

• If no horizontal edges are violated, no action is taken.  
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Swapping horizontal 

dimension 

i 

j 

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗  for all dimensions 𝑗 ≠ 𝑖 

 
        



Proof of The Claim for Squares 

 

 

 

 

 

 

 

 

 

• If both horizontal edges are violated, both are swapped, so the 
number of vertical violated edges does not change.  
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Swapping horizontal 

dimension 

i 

j 

0 1 1 0 

1 0 0 1 

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗  for all dimensions 𝑗 ≠ 𝑖 

 
        



Proof of The Claim for Squares 

 

 

 

 

 

 

 

 

 

• Suppose one (say, top) horizontal edge is violated. 

• If both bottom vertices have the same label, the vertical edges 
get swapped.  
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i 

j 

Swapping horizontal 

dimension 

1 0 0 1 

𝒗 𝒗 𝒗 𝒗 

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗  for all dimensions 𝑗 ≠ 𝑖 

 
        



Proof of The Claim for Squares 

 

 

 

 

 

 

 

 

 

• Suppose one (say, top) horizontal edge is violated. 

• If both bottom vertices have the same label, the vertical edges 
get swapped.  

• Otherwise, the bottom vertices are labeled 01, and the 
vertical violation is repaired. 
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i 

j 

Swapping horizontal 

dimension 

1 0 0 1 

1 0 1 0 

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗  for all dimensions 𝑗 ≠ 𝑖 

 
        



Proof of The Claim for Squares 

 

 

 

 

 

After we perform swaps in all dimensions: 
• 𝑓 becomes monotone 

• # of values changed:  
      2 ⋅ 𝑉1 +  2 ⋅ (# violated edges in dim2 after swapping dim1) 

   + 2 ⋅ (# violated edges in dim3 after swapping dim1 and 2) 
                 + … ≤ 2 ⋅ 𝑉1 + 2 ⋅ 𝑉2 +⋯2 ⋅ 𝑉𝑛 = 2 ⋅ 𝑉 𝑓  

 

 

•     Improve the bound by a factor of 2. 
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Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗  for all dimensions 𝑗 ≠ 𝑖 

 
        

Repair Lemma 

  𝑓 can be made monotone by changing  ≤ 2 ⋅ 𝑉(𝑓) values.  



Testing if a Functions 𝑓 ∶ 0,1 𝑛 → *0,1+ is  monotone 
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Monotone or  

𝜀-far from monotone? 

 

               O(n/𝜀) time 

                                    (logarithmic in the size  

  of the input) 

 
 

0 

0 0 

0 1 

1 

1 

1 

1 

1 0 

0 0 

0 

1 

1 

monotone 

1

2
-far from monotone 



Graph Properties 



Testing if a Graph is Connected [Goldreich Ron]  

Input: a graph 𝐺 = (𝑉, 𝐸) on 𝑛 vertices 
• in adjacency lists representation  

      (a list of neighbors for each vertex)  

• maximum degree d, i.e., adjacency lists of length d with some empty entries 

Query (𝑣, 𝑖), where 𝑣 ∈  𝑉 and 𝑖 ∈ ,𝑑-: entry 𝑖 of adjacency list of vertex 𝑣 

Exact Answer: (dn) time 

 

• Approximate version:   

Is the graph connected or ²-far from connected? 

dist 𝐺1, 𝐺2 =
# 𝑜𝑓 𝑒𝑛𝑡𝑖𝑟𝑒𝑠 𝑖𝑛 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 𝑙𝑖𝑠𝑡𝑠 𝑜𝑛 𝑤ℎ𝑖𝑐ℎ 𝐺1 𝑎𝑛𝑑 𝐺2 𝑑𝑖𝑓𝑓𝑒𝑟

𝑑𝑛
 

Time:  𝑂
1

𝜀2𝑑
 today  

 

 

 

 

No dependence on n! 
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Testing Connectedness: Algorithm 

 

1. Repeat  s=8/ed times: 

2.      pick a random vertex 𝑢      

3.      determine if connected component of 𝑢 is small: 

              perform BFS from 𝑢, stopping after at most 4/ed new nodes 

4. Reject if a small connected component was found, otherwise accept. 

Run time: O(𝑑/e2𝑑2)=O(1/e2𝑑) 

 

Analysis:  

• Connected graphs are always accepted. 

• Remains to show:   

If a graph is ²-far from connected, it is rejected with probability  ≥
2

3
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  Connectedness Tester(G, d, ε) 



Testing Connectedness: Analysis 

 

 

 

 

 

 

 

 

• If Claim 2 holds, at least 
e𝑑𝑛
4
  nodes are in small connected components. 

• By Witness lemma, it suffices to sample 
2⋅4

e𝑑𝑛/𝑛
  = 

8

e𝑑
 nodes to detect one 

from a small connected component. 
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Claim 1 

  If G is e-far from connected, it has ≥
e𝑑𝑛
2
  connected components.   

Claim 2 

  If G is e-far from connected, it has ≥
e𝑑𝑛
4
  connected components  

of size at most 4/ed.   



Testing Connectedness: Proof of Claim 1 

 

 

 

We prove the contrapositive:  

If G has < 
e𝑑𝑛
2
  connected components, one can make G connected by 

modifying < e fraction of its representation, i.e., < e𝑑𝑛 entries. 

• If there are no degree restrictions, k components can be connected by 

adding k-1 edges, each affecting 2 nodes. Here, k <  
e𝑑𝑛
2
 , so 2k-2 < e𝑑𝑛 . 

• What if adjacency lists of all vertices in a component are full,  

i.e., all  vertex degrees are d? 
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Claim 1 

  If G is e-far from connected, it has ≥
e𝑑𝑛
2
  connected components.   



Freeing up an Adjacency List Entry 

 

 

 

 

What if adjacency lists of all vertices in a component are full,  

i.e., all  vertex degrees are d? 

 

• Consider an  MST of this component. 

• Let 𝑣 be a leaf of the MST. 

• Disconnect 𝑣 from a node other than its parent in the MST. 

• Two entries are changed while keeping the same number of components. 
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𝑣 

Claim 1 

  If G is e-far from connected, it has ≥
e𝑑𝑛
2
  connected components.   



Freeing up an Adjacency List Entry 

 

 

 

 

What if adjacency lists of all vertices in a component are full,  

i.e., all  vertex degrees are d? 

 

 

 

• Apply this to each component that <2 free spots in adjacency lists. 

• Now we can connect all the components using the freed up spots while 
ensuring that we never change more than 2 spots per component. 

• Thus, k components can be connected by changing 2k spots.  

      Here, k <  
e𝑑𝑛
4
 , so 2k < e𝑑𝑛 . 
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𝑣 

Claim 1 

  If G is e-far from connected, it has ≥
e𝑑𝑛
2
  connected components.   



Testing Connectedness: Proof of Claim 2 

 

 

 

 

 

 

 

 

• If Claim 1 holds, there are at least 
e𝑑𝑛
2
  connected components. 

• Their average size ≤
𝑛

e𝑑𝑛/2
 = 

2

e𝑑
. 

•  By an averaging argument (or Markov inequality), at least half of the 
components are of size at most twice the average. 
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Claim 1 

  If G is e-far from connected, it has ≥
e𝑑𝑛
2
  connected components.   

Claim 2 

  If G is e-far from connected, it has ≥
e𝑑𝑛
4
  connected components  

of size at most 4/ed.   



Testing if a Graph is Connected [Goldreich Ron]  
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Input: a graph 𝐺 = (𝑉, 𝐸) on 𝑛 vertices 

• in adjacency lists representation  

      (a list of neighbors for each vertex)  

• maximum degree d 

 

 

Connected or  

𝜀-far from connected? 

 𝑂
1

𝜀2𝑑
 time 

                                                        (no dependence on 𝑛) 

 
 



Approximating # of Connected Components 

[Chazelle Rubinfeld Trevisan]  

Input: a graph 𝐺 = (𝑉, 𝐸) on n vertices 
• in adjacency lists representation  

      (a list of neighbors for each vertex)  

• maximum degree d 

Exact Answer: (dn) time 

Additive approximation:  # of CC ±εn 

                  with probability ¸ 2/3 

Time:   

• Known: 𝑂
𝑑

𝜀2
log

1

𝜀
, 

𝑑

𝜀2
 

• Today:  𝑂
𝑑

𝜀3
. 

 

 

No dependence on n! 

58 Partially based on slides by Ronitt Rubinfeld: 

http://stellar.mit.edu/S/course/6/fa10/6.896/courseMaterial/topics/topic3/lectureNotes/lecst11/lecst11.pdf 



Breaks C up into 

 contributions 

of different nodes 

Approximating # of CCs: Main Idea 

• Let 𝐶 = number of components 

• For every vertex 𝑢, define 
𝑛𝑢 = number of nodes in u’s component 

– for each component A:   ∑
1

𝑛𝑢
= 1 𝑢∈𝐴  

∑
𝑢∈𝑉

1

𝑛𝑢
= 𝐶 

• Estimate this sum by estimating 𝑛𝑢’s for a few random nodes  

– If 𝑢’s component is small, its size can be computed by BFS. 

– If 𝑢’s component is big, then 1/𝑛𝑢 is small, so it does not 
contribute much to the sum 

– Can stop BFS after a few steps 

Similar to property tester for connectedness [Goldreich Ron] 
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Approximating # of CCs: Algorithm 

Estimating 𝑛𝑢 = the number of nodes in 𝑢’s component:  

•  Let estimate 𝑛 𝑢 = min 𝑛𝑢,
2

𝜀
 

– When 𝑢’s component has  · 2/e nodes , 𝑛 𝑢 = 𝑛𝑢  

– Else  𝑛 𝑢 = 2/e, and so 0 <
1

𝑛 𝑢
−

1

𝑛𝑢
<

1

𝑛 𝑢
=

𝜀

2
 

•  Corresponding estimate for C is 𝐶 = ∑
1

𝑛 𝑢
𝑢∈𝑉 .  It is a good estimate: 

𝐶 − 𝐶 = ∑
1

𝑛 𝑢
𝑢∈𝑉 − ∑

1

𝑛𝑢
𝑢∈𝑉 ≤ ∑

1

𝑛 𝑢
−

1

𝑛𝑢
≤

𝜀𝑛

2𝑢∈𝑉  

 

1. Repeat  s=Θ(1/e2) times: 

2.      pick a random vertex 𝑢      

3.      compute 𝑛 𝑢 via BFS from 𝑢, stopping after at most 2/e new nodes 

4.    Return 𝐶  = (average of the values 1/𝑛 𝑢) ∙ 𝑛 

Run time: O(d /e3) 
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𝑎
𝑏
𝑐
  

1

𝑛 𝑢
−

1

𝑛𝑢
≤
𝜀

2
 

APPROX_#_CCs (G, d, ε) 



Approximating # of CCs: Analysis 

Want to show: Pr 𝐶 − 𝐶 >
𝜀𝑛

2
≤

1

3
 

 

 

 

 

 

Let Yi = 1/𝑛 𝑢for the ith vertex 𝑢 in the sample 

• Y = ∑
𝑠

𝑖=1
Yi =

𝑠𝐶 

𝑛
  and E,Y-  = ∑

𝑠

𝑖=1
E,Yi- = 𝑠 ⋅ E,Y1- = 𝑠 ⋅

1

𝑛
∑

1

𝑛 𝑢
𝑢∈𝑉 =

𝑠𝐶 

𝑛
 

 Pr 𝐶 − 𝐶 >
𝜀𝑛

2
= Pr

𝑛

𝑠
𝑌 −

𝑛

𝑠
𝐸 𝑌 >

𝜀𝑛

2
= Pr Y − E Y >

𝜀𝑠

2
≤2𝑒−

𝜀2𝑠

2  

• Need 𝑠 = Θ
1

𝜀2
 samples to get probability ≤

1

3
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Let Y1, … , Ys be independently distributed random variables in [0,1] and  

let Y = ∑
𝑠

𝑖=1
Yi (sample sum). Then Pr Y − E Y ≥ δ ≤ 2e−2𝛿

2/𝑠. 

Hoeffding Bound 



Approximating # of CCs: Analysis 

So far:         𝐶 − 𝐶 ≤
𝜀𝑛

2
 

 Pr 𝐶 − 𝐶 >
𝜀𝑛

2
≤

1

3
 

• With probability ≥
2

3
 , 

𝐶 − 𝐶 ≤ 𝐶 − 𝐶 + 𝐶 − 𝐶 ≤
𝜀𝑛

2
+
𝜀𝑛

2
≤ 𝜀𝑛 

 

Summary:  

The number of connected components in 𝑛-vetex graphs of 

degree at most 𝑑 can be estimated within ±𝜀𝑛 in time 𝑂
𝑑

𝜀3
. 
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Minimum spanning tree (MST) 

• What is the cheapest way to connect all the dots? 
Input: a  weighted graph  

with n vertices and m edges 

 

 

 

 

 

• Exact computation: 
– Deterministic 𝑂(𝑚 ∙ inverse-Ackermann(𝑚)) time [Chazelle] 

– Randomized 𝑂(𝑚) time [Karger Klein Tarjan] 

 

1 

3 

7 

5 

2 

4 

63 Partially based on slides by Ronitt Rubinfeld: 

http://stellar.mit.edu/S/course/6/fa10/6.896/courseMaterial/topics/topic3/lectureNotes/lecst11/lecst11.pdf 



Approximating MST Weight in Sublinear Time 

[Chazelle Rubinfeld Trevisan]  

Input: a graph 𝐺 = (𝑉, 𝐸) on n vertices 

• in adjacency lists representation  

• maximum degree d and maximum allowed weight w 

• weights in ,1,2,…,w} 

Output:  (1+ ε)-approximation to MST weight, 𝑤𝑀𝑆𝑇 

Time:   

• Known: 𝑂
𝑑𝑤

𝜀3
log

𝑑𝑤

𝜀
, 

𝑑𝑤

𝜀2
 

• Today:  𝑂
𝑑𝑤4log 𝑤 

𝜀3
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No dependence on n! 



Idea Behind Algorithm 

 

 

 

 

• Characterize MST weight in terms of number of  connected 
components in certain subgraphs of G 

 

• Already know that number of connected components can be 
estimated quickly 
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• Recall Kruskal’s algorithm for computing MST exactly. 

 

Suppose all weights are 1 or 2.  Then MST weight                      
= (# weight-1 edges in MST) + 2 ⋅ (# weight-2 edges in MST) 

=   𝑛 –  1 + (# of weight-2 edges in MST) 

=   𝑛 –  1 + (# of CCs induced by weight-1 edges) −1 

 

weight 1 

weight 2 
connected components 
induced by weight-1 edges 

MST 

MST and Connected Components: Warm-up 

MST has  𝑛 − 1 edges 

By Kruskal 

C:/Users/sofya/Documents/svn-cse/Madhav-all/sublinear-algo-course-slides-WIM2011/kruskal-demonstration.ppt


MST and Connected Components 

In general:   Let 𝐺𝑖 = subgraph of 𝐺 containing all edges of weight ≤ 𝑖 
𝐶𝑖 = number of connected components in 𝐺𝑖 

Then MST has 𝐶𝑖 − 1 edges of weight  >  𝑖. 

 

 

 

 

• Let 𝛽𝑖  be the number of edges of weight > 𝑖 in MST 

• Each MST edge contributes 1 to 𝑤𝑀𝑆𝑇, each MST edge of weight >1 
contributes 1 more, each MST edge of weight >2 contributes one more, … 

𝑤𝑀𝑆𝑇 𝐺 =  𝛽𝑖

𝑤−1

𝑖=0

=  (𝐶𝑖

𝑤−1

𝑖=0

− 1) = −𝑤 +  𝐶𝑖

𝑤−1

𝑖=0

= 𝑛 − 𝑤 +  𝐶𝑖

𝑤−1

𝑖=1
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𝑤𝑀𝑆𝑇 𝐺 = 𝑛 − 𝑤 +  𝐶𝑖

𝑤−1

𝑖=1

 

Claim 



APPROX_MSTweight (G, w, d, ε) 

Algorithm for Approximating 𝒘𝑴𝑺𝑻 

 

1. For 𝑖 = 1 to 𝑤 − 1 do: 

2.  𝐶 𝑖 ←APPROX_#CCs(𝐺𝑖  , 𝑑, 𝜀/w). 

3. Return 𝑤 𝑀𝑆𝑇 = 𝑛 − 𝑤 + ∑ 𝐶 𝑖
𝑤−1
𝑖=1 . 

Analysis: 

• Suppose all estimates of 𝐶𝑖’s are good: 𝐶 𝑖 − 𝐶𝑖 ≤
𝜀

𝑤
 𝑛. 

      Then 𝑤 𝑀𝑆𝑇 − 𝑤𝑀𝑆𝑇 = | ∑ (𝐶 𝑖−𝐶𝑖)| ≤ 
𝑤−1
𝑖=1  ∑ |𝐶 𝑖 − 𝐶𝑖| ≤ 𝑤 ⋅ 𝑤−1

𝑖=1
𝜀

𝑤
 𝑛 = 𝜀𝑛 

• Pr[all 𝑤 − 1 estimates are good]≥ 2/3 𝑤−1 

• Not good enough! Need error probability ≤
1

3𝑤
 for each iteration 

• Then, by Union Bound, Pr[error]≤ 𝑤 ⋅ 
1

3𝑤
=

1

3
 

• Can amplify success probability of any algorithm by repeating it and taking 
the median answer. 

• Can take more samples in APPROX_#CCs. What’s the resulting run time? 
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Claim.   𝑤𝑀𝑆𝑇 𝐺 = 𝑛 − 𝑤 + ∑ 𝐶𝑖
𝑤−1
𝑖=1  



Multiplicative Approximation for 𝒘𝑴𝑺𝑻 

For MST cost, additive approximation ⟹ multiplicative approximation 

𝑤𝑀𝑆𝑇 ≥ 𝑛 − 1      ⟹     𝑤𝑀𝑆𝑇 ≥ 𝑛/2 for 𝑛 ≥ 2 

 

• 𝜀𝑛-additive approximation:  

𝑤𝑀𝑆𝑇 − 𝜀𝑛 ≤ 𝑤 𝑀𝑆𝑇 ≤ 𝑤𝑀𝑆𝑇 + 𝜀𝑛 

 

• (1 ± 2𝜀)-multiplicative approximation:  
𝑤𝑀𝑆𝑇 1 − 2𝜀 ≤ 𝑤𝑀𝑆𝑇 −  𝜀𝑛 ≤ 𝑤 𝑀𝑆𝑇 ≤ 𝑤𝑀𝑆𝑇 + 𝜀𝑛 ≤ 𝑤𝑀𝑆𝑇 1 + 2𝜀  
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