
Motivation for Sublinear-Time Algorithms

Massive datasets

• world-wide web

• online social networks

• genome project

• sales logs

• census data

• high-resolution images

• scientific measurements

Long access time

• communication bottleneck (slow connection)

• implicit data (an experiment per data point)

1

What Can We Hope For?

• What can an algorithm compute if it

– reads only a sublinear portion of the data?

– runs in sublinear time?

• Some problems have exact deterministic solutions

• For most interesting problems algorithms must be

– approximate

– randomized

2

A Sublinear-Time Algorithm

3

B L A - B L A - B L A - B L A - B L A - B L A - B L A - B L A

approximate answer

sublinear-time algorithm

? L ? B ? L ? A

 Quality of

approximation

Resources
• number of queries

• running time

Types of Approximation

Classical approximation

• need to compute a value
 output should be close to the desired value

 example: average

Property testing

• need to answer YES or NO
 Intuition: only require correct answers on two sets of instances that are

very different from each other

4

Classical Approximation

A Simple Example

Approximate Diameter of a Point Set [Indyk]

Input: 𝑚 points, described by a distance matrix 𝐷

– 𝐷𝑖𝑗 is the distance between points 𝑖 and 𝑗

– 𝐷 satisfies triangle inequality and symmetry

(Note: input size is 𝑛 = 𝑚2)

Let 𝑖, 𝑗 be indices that maximize 𝐷𝑖𝑗 .

Maximum 𝐷𝑖𝑗
is the diameter.

• Output: (𝑘, ℓ) such that 𝐷𝑘ℓ
 𝐷𝑖𝑗

/2

Algorithm and Analysis

1. Pick 𝑘 arbitrarily

2. Pick ℓ to maximize 𝐷𝑘ℓ

3. Output (𝑘, ℓ)

• Approximation guarantee
𝐷𝑖𝑗 ≤ 𝐷𝑖𝑘 + 𝐷𝑘𝑗 (triangle inequality)

 ≤ 𝐷𝑘ℓ + 𝐷𝑘ℓ (choice of ℓ + symmetry of 𝐷)

 ≤ 2𝐷𝑘ℓ

• Running time: 𝑂(𝑚) = 𝑂(𝑚 = 𝑛)

𝑖

𝑗

𝑘

ℓ

A rare example of a deterministic

sublinear-time algorithm

 Algorithm (𝑚,𝐷)

Property Testing

Property Testing: YES/NO Questions

Does the input satisfy some property? (YES/NO)

“in the ballpark” vs. “out of the ballpark”

Does the input satisfy the property
or is it far from satisfying it?

• sometimes it is the right question (probabilistically checkable proofs (PCPs))

• as good when the data is constantly changing (WWW)

• fast sanity check to rule out inappropriate inputs (airport security questioning)

9

10

Property Tester

Close to YES

Far from

 YES

YES

Reject with
probability 2/3

Don’t care

Accept with
probability ≥ 𝟐/𝟑



Property Tester Definition

Probabilistic Algorithm

YES Accept with
probability ≥ 𝟐/𝟑

Reject with
probability 2/3

NO



 far = differs in many places 𝜀- (≥ 𝜀 fraction of places)

 𝜀

Randomized Sublinear
Algorithms

Toy Examples

 Test (𝑛, 𝑤)

Property Testing: a Toy Example

Input: a string 𝑤 ∈ 0,1 𝑛

Question: Is 𝑤 = 00…0?

 Requires reading entire input.

Approximate version: Is 𝑤 = 00…0 or

 does it have ≥ 𝜀𝑛 1’s (“errors”)?

1. Sample 𝑠 = 2/𝜀 positions uniformly and independently at random

2. If 1 is found, reject; otherwise, accept

Analysis: If 𝑤 = 00…0, it is always accepted.

If 𝑤 is 𝜀-far, Pr[error] = Pr*no 1’s in the sample+≤ 1 − 𝜀 𝑠 ≤ 𝑒−𝜀𝑠 = 𝑒−2 <
1

3

If a test catches a witness with probability ≥ 𝑝,

then s =
2

𝑝
 iterations of the test catch a witness with probability ≥ 2/3.

12

Used: 1 − 𝑥 ≤ 𝑒−𝑥

Witness Lemma

0 0 0 1 … 0 1 0 0

Randomized Approximation: a Toy Example

Input: a string 𝑤 ∈ 0,1 𝑛

Goal: Estimate the fraction of 1’s in 𝑤 (like in polls)

It suffices to sample 𝑠 = 1 ⁄ 𝜀2 positions and output the average
to get the fraction of 1’s ±𝜀 (i.e., additive error 𝜀) with probability ¸ 2/3

Yi = value of sample 𝑖. Then E[Y] = ∑
𝑠

𝑖=1
E,Yi- = 𝑠 ⋅ (fraction of 1’s in 𝑤)

Pr (sample average) − fraction of 1′s in 𝑤 ≥ 𝜀 = Pr Y − E Y ≥ 𝜀𝑠

≤ 2e−2𝛿
2/𝑠 = 2𝑒−2 < 1/3

13

Let Y1, … , Ys be independently distributed random variables in [0,1] and

let Y = ∑
𝑠

𝑖=1
Yi (sample sum). Then Pr Y − E Y ≥ δ ≤ 2e−2𝛿

2/𝑠.

0 0 0 1 … 0 1 0 0

Hoeffding Bound

Apply Hoeffding Bound with 𝛿 = 𝜀𝑠 substitute 𝑠 = 1 ⁄ 𝜀2

Property Testing

Simple Examples

Testing Properties of Images

15

Pixel Model

16

Query: point (𝑖1, 𝑖2)

Answer: color of (𝑖1, 𝑖2)

Input: 𝑛 × 𝑛 matrix of pixels

(0/1 values for black-and-white pictures)

Testing if an Image is a Half-plane [R03]

A half-plane or

𝜀-far from a half-plane?

 O(1/𝜀) time

17

Half-plane Instances

18

A half-plane 1

4
-far from a half-plane

Half-plane Instances

19

A half-plane 1

4
-far from a half-plane

Half-plane Instances

20

A half-plane 1

4
-far from a half-plane

Half-plane Instances

21

A half-plane 1

4
-far from a half-plane

Half-plane Instances

22

A half-plane 1

4
-far from a half-plane

Half-plane Instances

23

A half-plane 1

4
-far from a half-plane

Half-plane Instances

24

A half-plane 1

4
-far from a half-plane

Strategy

“Testing by implicit learning” paradigm

• Learn the outline of the image by querying a few pixels.

• Test if the image conforms to the outline by random sampling,
and reject if something is wrong.

25

Half-plane Test

26

Claim. The number of sides with different
corners is 0, 2, or 4.

Algorithm
1. Query the corners.

? ?

? ?

Half-plane Test: 4 Bi-colored Sides

27

Claim. The number of sides with different
corners is 0, 2, or 4.

 Analysis

• If it is 4, the image cannot be a half-plane.

Algorithm
1. Query the corners.
2. If the number of sides with different corners is 4, reject.

Half-plane Test: 0 Bi-colored Sides

28

Claim. The number of sides with different
corners is 0, 2, or 4.

 Analysis

• If all corners have the same color, the image is a
half-plane if and only if it is unicolored.

Algorithm
1. Query the corners.
2. If all corners have the same color 𝑐, test if all pixels have color 𝑐
 (as in Toy Example 1).

?

?

?
?

?

?

Half-plane Test: 2 Bi-colored Sides

29

Claim. The number of sides with different
corners is 0, 2, or 4.

Algorithm
1. Query the corners.
2. If # of sides with different corners is 2, on both sides find 2 different

pixels within distance 𝜀𝑛/2 by binary search.
3. Query 4/𝜀 pixels from 𝑊 ∪ 𝐵
4. Accept iff all 𝑊pixels are white and all 𝐵 pixels are black.

Analysis

• The area outside of 𝑊 ∪𝐵 has ≤ 𝜀𝑛2/2 pixels.

• If the image is a half-plane, W contains only

white pixels and B contains only black pixels.

• If the image is 𝜀-far from half-planes, it has

≥ 𝜀𝑛2/2 wrong pixels in 𝑊 ∪𝐵.
• By Witness Lemma, 4/𝜀 samples suffice to

catch a wrong pixel.

? ?
𝜀𝑛/2

? ?
𝜀𝑛/2

𝑊

𝐵

Testing if an Image is a Half-plane [R03]

A half-plane or

𝜀-far from a half-plane?

 O(1/𝜀) time

30

Other Results on Properties of Images

• Pixel Model
Convexity [Berman Murzabulatov R]

Convex or 𝜀-far from convex?

 O(1/𝜀) time

Connectedness [Berman Murzabulatov R]

Connected or 𝜀-far from connected?

 O(1/𝜀3/2 log 1/𝜀) time

Partitioning [Kleiner Keren Newman 10]

Can be partitioned according to a template

or is 𝜀-far?

 time independent of image size

• Properties of sparse images [Ron Tsur 10]

31

Testing if a List is Sorted

Input: a list of n numbers x1 , x2 ,..., xn

• Question: Is the list sorted?

 Requires reading entire list: (n) time

• Approximate version: Is the list sorted or ²-far from sorted?

 (An ² fraction of xi ’s have to be changed to make it sorted.)

 [Ergün Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01]: O((log n)/²) time

 (log n) queries

• Attempts:

 1. Test: Pick a random i and reject if xi > xi+1 .

 Fails on: 1 1 1 1 1 1 1 0 0 0 0 0 0 0 Ã 1/2-far from sorted

 2. Test: Pick random i < j and reject if xi > xj.

 Fails on: 1 0 2 1 3 2 4 3 5 4 6 5 7 6 Ã 1/2-far from sorted

32

1
2

Is a list sorted or ²-far from sorted?

Idea: Associate positions in the list with vertices of the directed line.

Construct a graph (2-spanner)

• by adding a few “shortcut” edges (i, j) for i < j

• where each pair of vertices is connected by a path of length at most 2

33

… …

≤ n log n edges

 1 2 3 … n-1 n

Is a list sorted or ²-far from sorted?

Pick a random edge (xi ,xj) from the 2-spanner and reject if xi > xj.

 1 2 5 4 3 6 7
Analysis:

• Call an edge (xi ,xj) violated if xi > xj , and good otherwise.

• If xi is an endpoint of a violated edge, call it bad. Otherwise, call it good.

Proof: Consider any two good numbers, xi and xj.

 They are connected by a path of (at most) two good edges (xi ,xk), (xk ,xj).

) xi ≤ xk and xk ≤ xj

) xi ≤ xj

34

1
2

1
2

5 4 3
xi xj xk

Claim 1. All good numbers xi are sorted.

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Is a list sorted or ²-far from sorted?

Pick a random edge (xi ,xj) from the 2-spanner and reject if xi > xj.

 1 2 5 4 3 6 7
Analysis:

• Call an edge (xi ,xj) violated if xi > xj , and good otherwise.

• If xi is an endpoint of a bad edge, call it bad. Otherwise, call it good.

Proof: If a list is ²-far from sorted, it has ¸ ² n bad numbers. (Claim 1)

• Each violated edge contributes 2 bad numbers.

• 2-spanner has ¸ ² n/2 violated edges out of · n log n.

35

1
2

1
2

5 4 3
xi xj xk

Claim 1. All good numbers xi are sorted.

Claim 2. An ²-far list violates ¸ ² /(2 log n) fraction of edges in 2-spanner.

Is a list sorted or ²-far from sorted?

Pick a random edge (xi ,xj) from the 2-spanner and reject if xi > xj.

 1 2 5 4 3 6 7
Analysis:

• Call an edge (xi ,xj) violated if xi > xj , and good otherwise.

By Witness Lemma, it suffices to sample (4 log n)/² edges from 2-spanner.

Sample (4 log n)/ ² edges (xi ,xj) from the 2-spanner and reject if xi > xj.

Guarantee: All sorted lists are accepted.

All lists that are ²-far from sorted are rejected with probability ¸2/3.

Time: O((log n)/²)

 36

1
2

1
2

5 4 3
xi xj xk

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Algorithm

Claim 2. An ²-far list violates ¸ ² /(2 log n) fraction of edges in 2-spanner.

Basic Properties of
Functions

38

f(000)

f(111) f(011)

f(100)

f(101)

f(110) f(010)

f(001)

 Boolean Functions 𝒇 ∶ 𝟎, 𝟏 𝒏 → *𝟎, 𝟏+

Graph representation:

𝑛-dimensional hypercube

• 2𝑛 vertices: bit strings of length 𝑛

• 2𝑛−1𝑛 edges: (𝑥, 𝑦) is an edge if 𝑦 can be obtained from 𝑥 by
increasing one bit from 0 to 1

• each vertex 𝑥 is labeled with 𝑓(𝑥)

001001

011001

𝑥

𝑦

Monotonicity of Functions

39

[Goldreich Goldwasser Lehman Ron Samorodnitsky,

 Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky

 Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky]

• A function 𝑓 ∶ 0,1 𝑛 → *0,1+ is monotone

 if increasing a bit of 𝑥 does not decrease 𝑓(𝑥).

• Is 𝑓 monotone or 𝜀-far from monotone
 (𝑓 has to change on many points to become monontone)?

– Edge 𝑥𝑦 is violated by 𝑓 if 𝑓 (𝑥) > 𝑓 (𝑦).

Time:

– 𝑂(𝑛/𝜀), logarithmic in the size of the input, 2𝑛

– Ω(𝑛/𝜀) for restricted class of tests

– Recent: Θ(𝑛/𝜀2) for nonadaptive tests

[Khot Minzer Safra 15, Chen De Servidio Tang 15]

0

0 0

0 1

1

1

1

1

1 0

0 0

0

1

1

monotone

1

2
-far from monotone

Monotonicity Test [GGLRS, DGLRRS]

40

Idea: Show that functions that are far from monotone violate many edges.

Analysis

• If 𝑓 is monotone, EdgeTest always accepts.

• If 𝑓 is 𝜀-far from monotone, by Witness Lemma, it suffices to show that

≥ 𝜀/𝑛 fraction of edges (i.e.,
𝜀

𝑛
⋅ 2𝑛−1𝑛 = 𝜀2𝑛−1 edges) are violated by 𝑓.

– Let 𝑉(𝑓) denote the number of edges violated by 𝑓.

 Contrapositive: If 𝑉(𝑓) < 𝜀 2𝑛−1,
 𝑓 can be made monotone by changing < 𝜀 2𝑛 values.

EdgeTest (𝑓, ε)

1. Pick 2𝑛/𝜀 edges (𝑥, 𝑦) uniformly at random from the hypercube.

2. Reject if some 𝑥, 𝑦 is violated (i.e. 𝑓 𝑥 > 𝑓(𝑦)). Otherwise, accept.

Repair Lemma

 𝑓 can be made monotone by changing ≤ 2 ⋅ 𝑉(𝑓) values.

Repair Lemma: Proof Idea

41

Proof idea: Transform f into a monotone function by
repairing edges in one dimension at a time.

Repair Lemma

 𝑓 can be made monotone by changing ≤ 2 ⋅ 𝑉(𝑓) values.

42

Repairing Violated Edges in One Dimension

0 0 0 0

1

1

1

0

0

0

0

0

1

1

0

1

Swapping horizontal

dimension

Swap violated edges 10 in one dimension to 01.

Let 𝑉𝑗 = # of violated edges in dimension 𝑗

Enough to prove the claim for squares

i

j

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗 for all dimensions 𝑗 ≠ 𝑖

Proof of The Claim for Squares

• If no horizontal edges are violated, no action is taken.

43

Swapping horizontal

dimension

i

j

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗 for all dimensions 𝑗 ≠ 𝑖

Proof of The Claim for Squares

• If both horizontal edges are violated, both are swapped, so the
number of vertical violated edges does not change.

44

Swapping horizontal

dimension

i

j

0 1 1 0

1 0 0 1

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗 for all dimensions 𝑗 ≠ 𝑖

Proof of The Claim for Squares

• Suppose one (say, top) horizontal edge is violated.

• If both bottom vertices have the same label, the vertical edges
get swapped.

45

i

j

Swapping horizontal

dimension

1 0 0 1

𝒗 𝒗 𝒗 𝒗

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗 for all dimensions 𝑗 ≠ 𝑖

Proof of The Claim for Squares

• Suppose one (say, top) horizontal edge is violated.

• If both bottom vertices have the same label, the vertical edges
get swapped.

• Otherwise, the bottom vertices are labeled 01, and the
vertical violation is repaired.

46

i

j

Swapping horizontal

dimension

1 0 0 1

1 0 1 0

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗 for all dimensions 𝑗 ≠ 𝑖

Proof of The Claim for Squares

After we perform swaps in all dimensions:
• 𝑓 becomes monotone

• # of values changed:
 2 ⋅ 𝑉1 + 2 ⋅ (# violated edges in dim2 after swapping dim1)

 + 2 ⋅ (# violated edges in dim3 after swapping dim1 and 2)
 + … ≤ 2 ⋅ 𝑉1 + 2 ⋅ 𝑉2 +⋯2 ⋅ 𝑉𝑛 = 2 ⋅ 𝑉 𝑓

• Improve the bound by a factor of 2.

 47

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗 for all dimensions 𝑗 ≠ 𝑖

Repair Lemma

 𝑓 can be made monotone by changing ≤ 2 ⋅ 𝑉(𝑓) values.

Testing if a Functions 𝑓 ∶ 0,1 𝑛 → *0,1+ is monotone

48

Monotone or

𝜀-far from monotone?

 O(n/𝜀) time

 (logarithmic in the size

 of the input)

0

0 0

0 1

1

1

1

1

1 0

0 0

0

1

1

monotone

1

2
-far from monotone

Graph Properties

Testing if a Graph is Connected [Goldreich Ron]

Input: a graph 𝐺 = (𝑉, 𝐸) on 𝑛 vertices
• in adjacency lists representation

 (a list of neighbors for each vertex)

• maximum degree d, i.e., adjacency lists of length d with some empty entries

Query (𝑣, 𝑖), where 𝑣 ∈ 𝑉 and 𝑖 ∈ ,𝑑-: entry 𝑖 of adjacency list of vertex 𝑣

Exact Answer: (dn) time

• Approximate version:

Is the graph connected or ²-far from connected?

dist 𝐺1, 𝐺2 =
𝑜𝑓 𝑒𝑛𝑡𝑖𝑟𝑒𝑠 𝑖𝑛 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 𝑙𝑖𝑠𝑡𝑠 𝑜𝑛 𝑤ℎ𝑖𝑐ℎ 𝐺1 𝑎𝑛𝑑 𝐺2 𝑑𝑖𝑓𝑓𝑒𝑟

𝑑𝑛

Time: 𝑂
1

𝜀2𝑑
 today

No dependence on n!

50

Testing Connectedness: Algorithm

1. Repeat s=8/ed times:

2. pick a random vertex 𝑢

3. determine if connected component of 𝑢 is small:

 perform BFS from 𝑢, stopping after at most 4/ed new nodes

4. Reject if a small connected component was found, otherwise accept.

Run time: O(𝑑/e2𝑑2)=O(1/e2𝑑)

Analysis:

• Connected graphs are always accepted.

• Remains to show:

If a graph is ²-far from connected, it is rejected with probability ≥
2

3

51

 Connectedness Tester(G, d, ε)

Testing Connectedness: Analysis

• If Claim 2 holds, at least
e𝑑𝑛
4
 nodes are in small connected components.

• By Witness lemma, it suffices to sample
2⋅4

e𝑑𝑛/𝑛
 =

8

e𝑑
 nodes to detect one

from a small connected component.

52

Claim 1

 If G is e-far from connected, it has ≥
e𝑑𝑛
2
 connected components.

Claim 2

 If G is e-far from connected, it has ≥
e𝑑𝑛
4
 connected components

of size at most 4/ed.

Testing Connectedness: Proof of Claim 1

We prove the contrapositive:

If G has <
e𝑑𝑛
2
 connected components, one can make G connected by

modifying < e fraction of its representation, i.e., < e𝑑𝑛 entries.

• If there are no degree restrictions, k components can be connected by

adding k-1 edges, each affecting 2 nodes. Here, k <
e𝑑𝑛
2
 , so 2k-2 < e𝑑𝑛 .

• What if adjacency lists of all vertices in a component are full,

i.e., all vertex degrees are d?

53

Claim 1

 If G is e-far from connected, it has ≥
e𝑑𝑛
2
 connected components.

Freeing up an Adjacency List Entry

What if adjacency lists of all vertices in a component are full,

i.e., all vertex degrees are d?

• Consider an MST of this component.

• Let 𝑣 be a leaf of the MST.

• Disconnect 𝑣 from a node other than its parent in the MST.

• Two entries are changed while keeping the same number of components.

54

𝑣

Claim 1

 If G is e-far from connected, it has ≥
e𝑑𝑛
2
 connected components.

Freeing up an Adjacency List Entry

What if adjacency lists of all vertices in a component are full,

i.e., all vertex degrees are d?

• Apply this to each component that <2 free spots in adjacency lists.

• Now we can connect all the components using the freed up spots while
ensuring that we never change more than 2 spots per component.

• Thus, k components can be connected by changing 2k spots.

 Here, k <
e𝑑𝑛
4
 , so 2k < e𝑑𝑛 .

55

𝑣

Claim 1

 If G is e-far from connected, it has ≥
e𝑑𝑛
2
 connected components.

Testing Connectedness: Proof of Claim 2

• If Claim 1 holds, there are at least
e𝑑𝑛
2
 connected components.

• Their average size ≤
𝑛

e𝑑𝑛/2
 =

2

e𝑑
.

• By an averaging argument (or Markov inequality), at least half of the
components are of size at most twice the average.

56

Claim 1

 If G is e-far from connected, it has ≥
e𝑑𝑛
2
 connected components.

Claim 2

 If G is e-far from connected, it has ≥
e𝑑𝑛
4
 connected components

of size at most 4/ed.

Testing if a Graph is Connected [Goldreich Ron]

57

Input: a graph 𝐺 = (𝑉, 𝐸) on 𝑛 vertices

• in adjacency lists representation

 (a list of neighbors for each vertex)

• maximum degree d

Connected or

𝜀-far from connected?

 𝑂
1

𝜀2𝑑
 time

 (no dependence on 𝑛)

Approximating # of Connected Components

[Chazelle Rubinfeld Trevisan]

Input: a graph 𝐺 = (𝑉, 𝐸) on n vertices
• in adjacency lists representation

 (a list of neighbors for each vertex)

• maximum degree d

Exact Answer: (dn) time

Additive approximation: # of CC ±εn

 with probability ¸ 2/3

Time:

• Known: 𝑂
𝑑

𝜀2
log

1

𝜀
, 

𝑑

𝜀2

• Today: 𝑂
𝑑

𝜀3
.

No dependence on n!

58 Partially based on slides by Ronitt Rubinfeld:

http://stellar.mit.edu/S/course/6/fa10/6.896/courseMaterial/topics/topic3/lectureNotes/lecst11/lecst11.pdf

Breaks C up into

 contributions

of different nodes

Approximating # of CCs: Main Idea

• Let 𝐶 = number of components

• For every vertex 𝑢, define
𝑛𝑢 = number of nodes in u’s component

– for each component A: ∑
1

𝑛𝑢
= 1 𝑢∈𝐴

∑
𝑢∈𝑉

1

𝑛𝑢
= 𝐶

• Estimate this sum by estimating 𝑛𝑢’s for a few random nodes

– If 𝑢’s component is small, its size can be computed by BFS.

– If 𝑢’s component is big, then 1/𝑛𝑢 is small, so it does not
contribute much to the sum

– Can stop BFS after a few steps

Similar to property tester for connectedness [Goldreich Ron]

59

Approximating # of CCs: Algorithm

Estimating 𝑛𝑢 = the number of nodes in 𝑢’s component:

• Let estimate 𝑛 𝑢 = min 𝑛𝑢,
2

𝜀

– When 𝑢’s component has · 2/e nodes , 𝑛 𝑢 = 𝑛𝑢

– Else 𝑛 𝑢 = 2/e, and so 0 <
1

𝑛 𝑢
−

1

𝑛𝑢
<

1

𝑛 𝑢
=

𝜀

2

• Corresponding estimate for C is 𝐶 = ∑
1

𝑛 𝑢
𝑢∈𝑉 . It is a good estimate:

𝐶 − 𝐶 = ∑
1

𝑛 𝑢
𝑢∈𝑉 − ∑

1

𝑛𝑢
𝑢∈𝑉 ≤ ∑

1

𝑛 𝑢
−

1

𝑛𝑢
≤

𝜀𝑛

2𝑢∈𝑉

1. Repeat s=Θ(1/e2) times:

2. pick a random vertex 𝑢

3. compute 𝑛 𝑢 via BFS from 𝑢, stopping after at most 2/e new nodes

4. Return 𝐶 = (average of the values 1/𝑛 𝑢) ∙ 𝑛

Run time: O(d /e3)

60

𝑎
𝑏
𝑐

1

𝑛 𝑢
−

1

𝑛𝑢
≤
𝜀

2

APPROX_#_CCs (G, d, ε)

Approximating # of CCs: Analysis

Want to show: Pr 𝐶 − 𝐶 >
𝜀𝑛

2
≤

1

3

Let Yi = 1/𝑛 𝑢for the ith vertex 𝑢 in the sample

• Y = ∑
𝑠

𝑖=1
Yi =

𝑠𝐶

𝑛
 and E,Y- = ∑

𝑠

𝑖=1
E,Yi- = 𝑠 ⋅ E,Y1- = 𝑠 ⋅

1

𝑛
∑

1

𝑛 𝑢
𝑢∈𝑉 =

𝑠𝐶

𝑛

 Pr 𝐶 − 𝐶 >
𝜀𝑛

2
= Pr

𝑛

𝑠
𝑌 −

𝑛

𝑠
𝐸 𝑌 >

𝜀𝑛

2
= Pr Y − E Y >

𝜀𝑠

2
≤2𝑒−

𝜀2𝑠

2

• Need 𝑠 = Θ
1

𝜀2
 samples to get probability ≤

1

3

61

Let Y1, … , Ys be independently distributed random variables in [0,1] and

let Y = ∑
𝑠

𝑖=1
Yi (sample sum). Then Pr Y − E Y ≥ δ ≤ 2e−2𝛿

2/𝑠.

Hoeffding Bound

Approximating # of CCs: Analysis

So far: 𝐶 − 𝐶 ≤
𝜀𝑛

2

 Pr 𝐶 − 𝐶 >
𝜀𝑛

2
≤

1

3

• With probability ≥
2

3
 ,

𝐶 − 𝐶 ≤ 𝐶 − 𝐶 + 𝐶 − 𝐶 ≤
𝜀𝑛

2
+
𝜀𝑛

2
≤ 𝜀𝑛

Summary:

The number of connected components in 𝑛-vetex graphs of

degree at most 𝑑 can be estimated within ±𝜀𝑛 in time 𝑂
𝑑

𝜀3
.

62

Minimum spanning tree (MST)

• What is the cheapest way to connect all the dots?
Input: a weighted graph

with n vertices and m edges

• Exact computation:
– Deterministic 𝑂(𝑚 ∙ inverse-Ackermann(𝑚)) time [Chazelle]

– Randomized 𝑂(𝑚) time [Karger Klein Tarjan]

1

3

7

5

2

4

63 Partially based on slides by Ronitt Rubinfeld:

http://stellar.mit.edu/S/course/6/fa10/6.896/courseMaterial/topics/topic3/lectureNotes/lecst11/lecst11.pdf

Approximating MST Weight in Sublinear Time

[Chazelle Rubinfeld Trevisan]

Input: a graph 𝐺 = (𝑉, 𝐸) on n vertices

• in adjacency lists representation

• maximum degree d and maximum allowed weight w

• weights in ,1,2,…,w}

Output: (1+ ε)-approximation to MST weight, 𝑤𝑀𝑆𝑇

Time:

• Known: 𝑂
𝑑𝑤

𝜀3
log

𝑑𝑤

𝜀
, 

𝑑𝑤

𝜀2

• Today: 𝑂
𝑑𝑤4log 𝑤

𝜀3

64

No dependence on n!

Idea Behind Algorithm

• Characterize MST weight in terms of number of connected
components in certain subgraphs of G

• Already know that number of connected components can be
estimated quickly

65

• Recall Kruskal’s algorithm for computing MST exactly.

Suppose all weights are 1 or 2. Then MST weight
= (# weight-1 edges in MST) + 2 ⋅ (# weight-2 edges in MST)

= 𝑛 – 1 + (# of weight-2 edges in MST)

= 𝑛 – 1 + (# of CCs induced by weight-1 edges) −1

weight 1

weight 2
connected components
induced by weight-1 edges

MST

MST and Connected Components: Warm-up

MST has 𝑛 − 1 edges

By Kruskal

C:/Users/sofya/Documents/svn-cse/Madhav-all/sublinear-algo-course-slides-WIM2011/kruskal-demonstration.ppt

MST and Connected Components

In general: Let 𝐺𝑖 = subgraph of 𝐺 containing all edges of weight ≤ 𝑖
𝐶𝑖 = number of connected components in 𝐺𝑖

Then MST has 𝐶𝑖 − 1 edges of weight > 𝑖.

• Let 𝛽𝑖 be the number of edges of weight > 𝑖 in MST

• Each MST edge contributes 1 to 𝑤𝑀𝑆𝑇, each MST edge of weight >1
contributes 1 more, each MST edge of weight >2 contributes one more, …

𝑤𝑀𝑆𝑇 𝐺 = 𝛽𝑖

𝑤−1

𝑖=0

= (𝐶𝑖

𝑤−1

𝑖=0

− 1) = −𝑤 + 𝐶𝑖

𝑤−1

𝑖=0

= 𝑛 − 𝑤 + 𝐶𝑖

𝑤−1

𝑖=1

67

𝑤𝑀𝑆𝑇 𝐺 = 𝑛 − 𝑤 + 𝐶𝑖

𝑤−1

𝑖=1

Claim

APPROX_MSTweight (G, w, d, ε)

Algorithm for Approximating 𝒘𝑴𝑺𝑻

1. For 𝑖 = 1 to 𝑤 − 1 do:

2. 𝐶 𝑖 ←APPROX_#CCs(𝐺𝑖 , 𝑑, 𝜀/w).

3. Return 𝑤 𝑀𝑆𝑇 = 𝑛 − 𝑤 + ∑ 𝐶 𝑖
𝑤−1
𝑖=1 .

Analysis:

• Suppose all estimates of 𝐶𝑖’s are good: 𝐶 𝑖 − 𝐶𝑖 ≤
𝜀

𝑤
 𝑛.

 Then 𝑤 𝑀𝑆𝑇 − 𝑤𝑀𝑆𝑇 = | ∑ (𝐶 𝑖−𝐶𝑖)| ≤
𝑤−1
𝑖=1 ∑ |𝐶 𝑖 − 𝐶𝑖| ≤ 𝑤 ⋅ 𝑤−1

𝑖=1
𝜀

𝑤
 𝑛 = 𝜀𝑛

• Pr[all 𝑤 − 1 estimates are good]≥ 2/3 𝑤−1

• Not good enough! Need error probability ≤
1

3𝑤
 for each iteration

• Then, by Union Bound, Pr[error]≤ 𝑤 ⋅
1

3𝑤
=

1

3

• Can amplify success probability of any algorithm by repeating it and taking
the median answer.

• Can take more samples in APPROX_#CCs. What’s the resulting run time?

68

Claim. 𝑤𝑀𝑆𝑇 𝐺 = 𝑛 − 𝑤 + ∑ 𝐶𝑖
𝑤−1
𝑖=1

Multiplicative Approximation for 𝒘𝑴𝑺𝑻

For MST cost, additive approximation ⟹ multiplicative approximation

𝑤𝑀𝑆𝑇 ≥ 𝑛 − 1 ⟹ 𝑤𝑀𝑆𝑇 ≥ 𝑛/2 for 𝑛 ≥ 2

• 𝜀𝑛-additive approximation:

𝑤𝑀𝑆𝑇 − 𝜀𝑛 ≤ 𝑤 𝑀𝑆𝑇 ≤ 𝑤𝑀𝑆𝑇 + 𝜀𝑛

• (1 ± 2𝜀)-multiplicative approximation:
𝑤𝑀𝑆𝑇 1 − 2𝜀 ≤ 𝑤𝑀𝑆𝑇 − 𝜀𝑛 ≤ 𝑤 𝑀𝑆𝑇 ≤ 𝑤𝑀𝑆𝑇 + 𝜀𝑛 ≤ 𝑤𝑀𝑆𝑇 1 + 2𝜀

69

