Motivation for Sublinear-Time Algorithms

Massive datasets

e world-wide web

e online social networks
e genome project

e sales logs

e census data

e high-resolution images

e scientific measurements

Long access time

e communication bottleneck (slow connection)

e implicit data (an experiment per data point)

What Can We Hope For?

e What can an algorithm compute if it
— reads only a sublinear portion of the data?
— runs in sublinear time?

e Some problems have exact deterministic solutions

e For most interesting problems algorithms must be

— approximate
— randomized

A Sublinear-Time Algorithm

B

L

Al -

B| L

Al -

B|L|A - |BlLIA-|[B|L|A-|BlL|A -

21| B

Y

-

T
\

sublinear-time algorithm

Quality of
approximation

Y

approximate answer

Resources
* number of queries
* running time

Types of Approximation

Classical approximation
* need to compute a value

» output should be close to the desired value
» example: average

Property testing
* need to answer YES or NO

» Intuition: only require correct answers on two sets of instances that are
very different from each other

Classical Approximation

A Simple Example

Approximate Diameter of a Point Set [indyk]

Input: m points, described by a distance matrix D
- D;; is the distance between points i and j
— D satisfies triangle inequality and symmetry
(Note: inputsizeisn = m?)

Let i,j be indices that maximize D;;

Maximum D,; is the diameter.

* Output: (k,¥) such that D, 2D, /2

Algorithm and Analysis

(" Algorithm (m, D) R J .
1. Pick k arbitrarily

2. Pick £ to maximize D,,

\3. Output (k,?) 4
e Approximation guarantee
D, < Dy + Dy, (triangle inequality)
<D,,+ D,, (choice of £ + symmetry of D) k
< 2Dk,
e Running time: O(m) = 0(m =+n) i
A rare example of a deterministic

> sublinear-time algorithm <

V\/\N

Property Testing

Property Testing: YES/NO Questions

Does the input satisfy some property? (YES/NO)

“in the ballpark” vs. “out of the ballpark”

Does the input satisfy the property
or is it far from satisfying it?
e sometimes it is the right question (probabilistically checkable proofs (PCPs))

e as good when the data is constantly changing (WWW)
e fast sanity check to rule out inappropriate inputs (airport security questioning)

Property Tester Definition

Probabilistic Algorithm

A

YES

Accept with

probability > 2/3

Reject with

NO :
probability > 2/3

Property Tester

A

YES

I N
Far from |:>
YES

Accept with
probability > 2/3

Don’t care

Reject with
probability > 2/3

e-far = differs in many places (= ¢ fraction of places)

10

Randomized Sublinear
Algorithms

Toy Examples

Property Testing: a Toy Example

Input: a stringw € {0,1}" 0(0j{0j1(../10|1 (0|0
Question: Is w = 00...0?
Requires reading entire input.

Approximate version: Isw=00..0o0r
does it have = en 1’s (“errors”)?

(Test (n, w) w

1. Sample s = 2/¢ positions uniformly and independently at randomJ

2. If 1is found, reject; otherwise, accept

Used: 1 —x < e™*

{

If wis e-far, Pr[error] = Pr[no I’sinthe sample]< (1 —¢)S < e & =e 2 < é
I

Analysis: If w = 00 ... 0, it is always accepted.

\nre
Withess Lemma
If a test catches a witness with probability = p,

2. : : : o
thens = > iterations of the test catch a witness with probability = 2/3.
N

12

Randomized Approximation: a Toy Example

Input: a stringw € {0,1}" 0(0j{0j1(../10|1 (0|0
Goal: Estimate the fraction of 1’s in w (like in polls)

It suffices to sample s = 1 / £ positions and output the average
to get the fraction of 1’s +¢ (i.e., additive error €) with probability > 2/3

/Hoeffding Bound A
Let Yy, ..., Ys be independently distributed random variables in [0,1] and
S
letY = Y Y, (sample sum). Then Pr[|Y — E[Y]| = 6] < 2e~28%/s,
_ i=1 J
S
Y; = value of sample i. Then E[Y] =) E[Y;] = s - (fraction of 1’s in w)

i=1
Pr[|(sample average) — (fraction of 1'sin w)| = €] = Pr[|Y — E[Y]| = &s]

< 2e728%/s = 2¢72 < 1/3
1 1

Apply Hoeffding Bound with § = ¢s substitute s = 1 / &2

13

Property Testing

Simple Examples

Testing Properties of Images

15

Pixel Model

Input: n X n matrix of pixels
(0/1 values for black-and-white pictures)

ONONONORONOCNORONONORONG)
ONONON N N N NONONORONG)
CC0000000O0O0OO0
ONON N NONON N NONORONG
ONONONORONON N NONORONG)
ONONONORON N NONONORONG)
ONONONON N NONONONORONG)
ONONON RONOCHORONONORONG)
ONON N N NONCHRONONORONG)
ONON N N N N N NONORONGO
ONONONORONOCNORONONORONG)
ONONONORONOCNORONONORONG)

Query: point (iy, i,)
Answer: color of (iy,i,)

Testing If an Image Is a Half-plane [ro3]

A half-plane or

e-far from a half-plane?

O(1/¢) time

Half-plane Instances

CNONONCHONONONONOL N N
CNONONCNONONONON N N N
CNONONONONONONO/L N N N
CNONONONONONON N N N N
ONONONONONONO/{ N N N N
ONONONONONON N N N N N
oNoNONONONO/{ N N N N N
oNoNONOoNON N N N N N N
O0OCO0OO0C0C/e000000
oNONONON N N N N N N N
O0CO0CO0/0e0000000
ONONON N N N N N N N N

A half-plane

CNONONONONON N N N N N J
ONONONONONON N N N N N J
ONONONONONON N N N N N J
ONONONONONON N N N N N J
CNONONONONON N N N N N J
CNONONONONON N N N N N J

LN N N N N NONONONORONG)
00000000 OOOO
00000000 OOOO
00000000 OOOO
LN N N N N NONONONORONG)
LN N N N N NONONONORONG)

i—far from a half-plane

18

Half-plane Instances

CNONONCHONONONONOL N N
CNONONCNONONONON N N N
CNONONONONONONO/L N N N
CNONONONONONON N N N N
ONONONONONONO/{ N N N N
ONONONONONON N N N N N
oNoNONONONO/{ N N N N N
oNoNONOoNON N N N N N N
O0OCO0OO0C0C/e000000
oNONONON N N N N N N N
O0CO0CO0/0e0000000
ONONON N N N N N N N N

A half-plane

CNONONONONON N N N N
CNONONONONON N N N N & J
CNONONONONON N N N & N J
oNONONONONON N N & N N J
CNONONONONON N & N N N J
oNONONONONON & N N N N J
0000O0HOOOOOO
0000BHOOOOOOO
L N NN N N NONONONORONG)
LN N N N N NONONONORONG)
060000000 O0OO0O
00000000 OOO0O

i—far from a half-plane

19

Half-plane Instances

CNONONCHONONONONOL N N
CNONONCNONONONON N N N
CNONONONONONONO/L N N N
CNONONONONONON N N N N
ONONONONONONO/{ N N N N
ONONONONONON N N N N N
oNoNONONONO/{ N N N N N
oNoNONOoNON N N N N N N
O0OCO0OO0C0C/e000000
oNONONON N N N N N N N
O0CO0CO0/0e0000000
ONONON N N N N N N N N

A half-plane

CNORONONONG
ONORONONONG®
ONORONONONG®
ONORONONONG®
CNORONONONG
ONORONONONG
000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000
ONONONORONG)
ONONONORONG)
ONONONORONG)
ONONONORONG)
ONONONORONG)
ONONONORONG)

i—far from a half-plane

20

Half-plane Instances

CNONONCHONONONONOL N N
CNONONCNONONONON N N N
CNONONONONONONO/L N N N
CNONONONONONON N N N N
ONONONONONONO/{ N N N N
ONONONONONON N N N N N
oNoNONONONO/{ N N N N N
oNoNONOoNON N N N N N N
O0OCO0OO0C0C/e000000
oNONONON N N N N N N N
O0CO0CO0/0e0000000
ONONON N N N N N N N N

A half-plane

ONONONORON N N N N N /
ORSNONONONON N N N N N J
ONORCNONONON N N N N N J
ONONORCNONON N N N N N J
CNONONORONON N N N N N J
CNONONONORON N N N N N J
LN NN N N EVNONONORONG)
0000000 0CO0OO0O
00000000 _OOO
00000000000
000000000 OQ[O
00000000000

i—far from a half-plane

21

Half-plane Instances

CNONONCHONONONONOL N N
CNONONCNONONONON N N N
CNONONONONONONO/L N N N
CNONONONONONON N N N N
ONONONONONONO/{ N N N N
ONONONONONON N N N N N
oNoNONONONO/{ N N N N N
oNoNONOoNON N N N N N N
O0OCO0OO0C0C/e000000
oNONONON N N N N N N N
O0CO0CO0/0e0000000
ONONON N N N N N N N N

A half-plane

CNONONONONON N N N N N J
ONONONONONON N N N N N J
ONONONONONON N N N N N J
ONONONONONON N N N N N J
CNONONONONON N N N N N J
CNONONONONON N N N N N J

LN N N N N NONONONORONG)
00000000 OOOO
00000000 OOOO
00000000 OOOO
LN N N N N NONONONORONG)
LN N N N N NONONONORONG)

i—far from a half-plane

22

Half-plane Instances

CNONONCHONONONONOL N N
CNONONCNONONONON N N N
CNONONONONONONO/L N N N
CNONONONONONON N N N N
ONONONONONONO/{ N N N N
ONONONONONON N N N N N
oNoNONONONO/{ N N N N N
oNoNONOoNON N N N N N N
O0OCO0OO0C0C/e000000
oNONONON N N N N N N N
O0CO0CO0/0e0000000
ONONON N N N N N N N N

A half-plane

CNONONONONON N N N N
CNONONONONON N N N N & J
CNONONONONON N N N & N J
oNONONONONON N N & N N J
CNONONONONON N & N N N J
oNONONONONON & N N N N J
0000O0HOOOOOO
0000BHOOOOOOO
L N NN N N NONONONORONG)
LN N N N N NONONONORONG)
060000000 O0OO0O
00000000 OOO0O

i—far from a half-plane

23

Half-plane Instances

CNONONCHONONONONOL N N
CNONONCNONONONON N N N
CNONONONONONONO/L N N N
CNONONONONONON N N N N
ONONONONONONO/{ N N N N
ONONONONONON N N N N N
oNoNONONONO/{ N N N N N
oNoNONOoNON N N N N N N
O0OCO0OO0C0C/e000000
oNONONON N N N N N N N
O0CO0CO0/0e0000000
ONONON N N N N N N N N

A half-plane

cNoNONoNONON N N N N N J
oNoNONONON-N N N N N N J
oNONONON NON N N N N N J
CNONON-NONON N N N N N J
ONOSNONONON N N N N N J
oy NCNCNONON N N N N N J
00000000 OOO0O
00000000 OOOO
00000000 OOOO
00000000 OOOO
LN N N N N NONONONORONG)
LN N N N N NONONONORONG)

i—far from a half-plane

24

Strategy

“Testing by implicit learning” paradigm

e Learn the outline of the image by querying a few pixels.

e Test if the image conforms to the outline by random sampling,
and reject if something is wrong.

25

Half-plane Test

{Claim. The number of sides with different J
cornersis 0, 2, or 4. -:::::::::::_.
@] - D]
/Algorithm N\
1. Query the corners.
\ /

26

Half-plane Test: 4 Bi-colored Sides

[Claim. The number of sides with different

cornersis 0,2, or 4.

ﬂnalysis

N

« [Ifitis 4, the image cannot be a half-plane.

\

%

/” Algorithm

1. Query the corners.

.

2. If the number of sides with different corners is 4, reject.

27

Half-plane Test: 0 Bi-colored Sides

{CIaim. The number of sides with different J
°

cornersis 0, 2, or 4. p-rrmrrnn i nt @
ﬂmalysis \ T L
» If all corners have the same color, the image is a S :.': o
half-plane if and only if it is unicolored. | - -« o o v o e [2]-
ZZZZZZ-ZZZZZZ

L

@ - - - - - ®

\ /
/Algorithm N

1. Query the corners.

2. If all corners have the same color ¢, test if all pixels have color ¢
(as in Toy Example 1).

o /

28

Half-plane Test: 2 Bi-colored Sides

[Claim. The number of sides with different J

cornersis 0,2, or4.

ﬂmalysm \

The area outside of W U B has < en?/2 pixels.
« If the image is a half-plane, W contains only

white pixels and B contains only black pixels.
 If the image is e-far from half-planes, it has

> en?/2 wrong pixels in W U B.

By Witness Lemma, 4 /¢ samples suffice to

K catch a wrong pixel. /

/Algorlthm

1. Query the corners.

2. If # of sides with different corners is 2, on both sides find 2 different
pixels within distance en/2 by binary search.

3. Query4/e pixels fromW U B

\4. Accept iff all Wpixels are white and all B pixels are black.

29

Testing If an Image Is a Half-plane [ro3]

A half-plane or

e-far from a half-plane?

O(1/¢) time ~/

Other Results on Properties of Images

e Pixel Model

Convexity [Berman Murzabulatov R]

Convex or e-far from convex?

O(1/¢) time

Connectedness [Berman Murzabulatov R]

Connected or e-far from connected?

0(1/€3/? \/log1/¢) time

Partitioning [Kleiner Keren Newman 10]

Can be partitioned according to a template

or is e-far?

time independent of image size

e Properties of sparse images [Ron Tsur 10]

31

Testing If a List Is Sorted

Input: a list of n numbers x,, x,,..., X,
e (Question: Is the list sorted?
Requires reading entire list: (2(n) time
e Approximate version: Is the list sorted or e-far from sorted?
(An € fraction of x;’s have to be changed to make it sorted.)
[Erglin Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01]: O((log n)/¢) time ~.¢;//
Q)(log n) queries
e Attempts:
1. Test: Pick a random jand reject if x;>x,,; .

Failson: 11111110000000 + 1/2-far from sorted

2. Test: Pick random i <j and reject if x; > x..

Failson: 10213243546576 < 1/2-far from sorted

32

Is a list sorted or e-far from sorted?

Idea: Associate positions in the list with vertices of the directed line.

Construct a graph (2-spanner) <nlog n edges

by adding a few “shortcut” edges (i, j) fori<j
where each pair of vertices is connected by a path of length at most 2

v

33

Is a list sorted or e-far from sorted?

(Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

— |

LPick a random edge (x;,x;) from the 2-spanner and reject if x; > x..

Analysis:
* Callan edge (x;,x) violated if x; > x;, and good otherwise.
e Ifx; is an endpoint of a violated edge, call it bad. Otherwise, call it good.

[Claim 1. All good numbers x; are sorted.]
Proof: Consider any two good numbers, x; and x..

They are connected by a path of (at most) two good edges (x;,x,), (x,,X;).
= X;< X, and x, < x;

= X; < X,

34

Is a list sorted or e-far from sorted?

(Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

— |

LPick a random edge (x;,x;) from the 2-spanner and reject if x; > x..

Analysis:
* Callan edge (x;,x) violated if x; > x;, and good otherwise.
e |Ifx; is an endpoint of a bad edge, call it bad. Otherwise, call it good.

[Claim 1. All good numbers x; are sorted.]

[Claim 2. An e-far list violates > ¢ /(2 log n) fraction of edges in 2-spanner.]

Proof: If a list is e-far from sorted, it has > ¢ n bad numbers. (Claim 1)
e Each violated edge contributes 2 bad numbers.
e 2-spanner has > ¢ n/2 violated edges out of < n log n.

35

Is a list sorted or e-far from sorted?

(Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

— |

LPick a random edge (x;,x;) from the 2-spanner and reject if x; > x..

Analysis:
* Callan edge (x;,x) violated if x; > x;, and good otherwise.

[Claim 2. An e-far list violates > ¢ /(2 log n) fraction of edges in 2-spanner.]

By Witness Lemma, it suffices to sample (4 log n)/e edges from 2-spanner.

(Algorithm
LSampIe (4 log n)/ € edges (x;,x;) from the i7anner and reject if x; > x,.

— 1

Guarantee: All sorted lists are accepted.
All lists that are e-far from sorted are rejected with probability >2/3.

Time: O((log n)/¢)
36

Basic Properties of
Functions

Boolean Functions f : {0,1}" — {0,1}

Graph representation: fo11) ,, f(111)

A

n-dimensional hypercube

f(010) 4 } £(110)

-

f(001)

Y

f(101)

f(000) >f(100)
o vertices: bit strings of length n

° edges: (x,y) is an edge if y can be obtained from x by

increasing one bit fromO0to 1 x | 001001
y [011001

e each vertex x is labeled with f (x)

38

Monotonicity of Functions

[Goldreich Goldwasser Lehman Ron Samorodnitsky,
Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky

Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky]

e Afunction f : {0,1}" — {0,1}is monotone
if increasing a bit of x does not decrease f (x).

monotone

e |s f monotone or g-far from monotone

(f has to change on many points to become monontone)?
— Edge x—yisviolated by f if f (x) > f ().
Time:

- 0(n/¢), logarithmic in the size of the input, 2" —-far from monotone
- Q(y/n/¢) for restricted class of tests
— Recent: O(y/n/&?) for nonadaptive tests

[Khot Minzer Safra 15, Chen De Servidio Tang 15] 29

Monotonicity Test [GGLRS, DGLRRS]

ldea: Show that functions that are far from monotone violate many edges.

ﬁidgeTest (f, €) \
Ll. Pick 2n /¢ edges (x, y) uniformly at random from the hypercube. J

2. Rejectif some (x,y) is violated (i.e. f(x) > f(y)). Otherwise, accept.

Analysis

e If f is monotone, EdgeTest always accepts.
e If fis e-far from monotone, by Witness Lemma, it suffices to show that
> ¢/n fraction of edges (i.e., % 20 In = 271 edges) are violated by f.
— Let V' (f) denote the number of edges violated by f.

Contrapositive: If V(f) < e2™1,
f can be made monotone by changing < ¢ 2" values.

(Repair Lemma
| f can be made monotone by changing < 2 - V(f) values.

— 1

40

Repair Lemma: Proof Idea

(Repair Lemma
| f can be made monotone by changing < 2 - V(f) values.

—1

Proof idea: Transform f into a monotone function by
repairing edges in one dimension at a time.

pediypsabypsalypad

41

Repairing Violated Edges in One Dimension

Swap violated edges 1—0 in one dimension to 0—1.

j o 0 o 0
A \ A A
5L ~ 0/ A ~ L7 ”
| lL——4—— Swapping horizontal 0 &—————
dimension
) N N PR m— ;

1 0 0 1

Let I; = # of violated edges in dimension j

[Claim. Swapping in dimension i does not increase V; for all dimensions j # i]

Enough to prove the claim for squares

42

Proof of The Claim for Squares

[Claim. Swapping in dimension i does not increase V; for all dimensions j # i]

't

e A . . e A
Swapping horizontal
dimension
| >
—————— > ————— >

e |f no horizontal edges are violated, no action is taken.

43

Proof of The Claim for Squares

[Claim. Swapping in dimension i does not increase V; for all dimensions j # i]

J
I 1 0 0 ______ .1
| \ ! Swapping horizontal '
dimension
| >
1-————= -0 0-————~= -1

e |f both horizontal edges are violated, both are swapped, so the
number of vertical violated edges does not change.

44

Proof of The Claim for Squares

[Claim. Swapping in dimension i does not increase V; for all dimensions j # i]

J
T—>_ 1 .0 0 > 1
| \ \ Swapping horizontal
dimension
| >
v o TV v TV

e Suppose one (say, top) horizontal edge is violated.

e |f both bottom vertices have the same label, the vertical edges
get swapped.

45

Proof of The Claim for Squares

[Claim. Swapping in dimension i does not increase V; for all dimensions j # i

J
I 1 0 0 ______ .1
| \ 1 Swapping horizontal '
dimension
| >
0-————~- ~ 1 0-————~= -1

e Suppose one (say, top) horizontal edge is violated.

e |f both bottom vertices have the same label, the vertical edges
get swapped.

e Otherwise, the bottom vertices are labeled 0—1, and the

vertical violation is repaired.
46

Proof of The Claim for Squares

CIa|m Swapping in dimension i does not increase V; for all dimensions j # i

e p e e

After we perform swaps in all dimensions:

* f becomes monotone

e # of values changed:
2-Vy + 2 - (#violated edges in dim 2 after swappingdim 1)
+ 2 - (# violated edges in dim 3 after swappingdim 1 and 2)
+ . <2-V+2-V,+-2-V, =2-V(f)

(Repair Lemma Q(

| f can be made monotone by changing < 2 - V(f) values.)

Q;// Improve the bound by a factor of 2.

47

Testing if a Functions f : {0,1}"* — {0,1} is monotone

Monotone or

e-far from monotone?

O(n/¢) time ~/ 1.7 [0 \0
(logarithmic in the size
of the input)

1 1
E-far from monotone

48

Graph Properties

Testing If a Graph i1s Connected [Goldreich Ron]

Input: a graph ¢ = (V, E) on n vertices v Y’

e in adjacency lists representation \
(a list of neighbors for each vertex) \

e maximum degree d, i.e., adjacency lists of length d with some empty entries

Query (v,), where v € V and i € [d]: entry i of adjacency list of vertex v
Exact Answer: QQ(dn) time

e Approximate version:
Is the graph connected or e-far from connected?

of entires in adjacency lists on which G, and G, dif fer

diSt(Gl, Gz) — an

1
Time: O (—d) today

g2

No dependence on n!

50

Testing Connectedness: Algorithm

ﬂ:on nectedness Tester(G, d, €) \
1. Repeat s=8/cd times:
2. pick a random vertex u
3. determine if connected component of u is small:

perform BFS from u, stopping after at most 4/ed new nodes
K4. Reject if a small connected component was found, otherwise accept. /

Run time: O(d/e2d?)=0(1/2d)

Analysis:
e Connected graphs are always accepted.

e Remains to show:

If a graph is e-far from connected, it is rejected with probability >

wilN

Testing Connectedness: Analysis

(Claim 1

y

Llf G is e-far from connected, it has > SdTn connected componentsJ

Claim 2

~

.

. - ed
If G is e-far from connected, it has > Tn connected components

of size at most 4/¢d. 5

. gdn .
e If Claim 2 holds, at least 4 nodes are in small connected components.

: : . 2-4 8
e By Witness lemma, it suffices to sample = — nodes to detect one

gdn/n &d

from a small connected component.

52

Testing Connectedness: Proof of Claim 1

(Claim 1 W
Llf G is e-far from connected, it has > SdTn connected componentsJ

We prove the contrapositive:

If G has < % connected components, one can make G connected by
modifying < € fraction of its representation, i.e., < edn entries.
e If there are no degree restrictions, k components can be connected by
adding k-1 edges, each affecting 2 nodes. Here, k < % , 50 2k-2 < edn .

e What if adjacency lists of all vertices in a component are full,
i.e., all vertex degrees are d?

53

Freeing up an Adjacency List Entry

(Claim 1 W
Llf G is e-far from connected, it has > ngn connected componentsJ

What if adjacency lists of all vertices in a component are full,
i.e., all vertex degrees are d?

e Consider an MST of this component.

e Let v be aleaf of the MST.

e Disconnect v from a node other than its parent in the MST.

e Two entries are changed while keeping the same number of components.

54

Freeing up an Adjacency List Entry

(Claim 1 W
Llf G is e-far from connected, it has > SdTn connected componentsJ

What if adjacency lists of all vertices in a component are full,

i.e., all vertex degrees are d?

e Apply this to each component that <2 free spots in adjacency lists.

e Now we can connect all the components using the freed up spots while
ensuring that we never change more than 2 spots per component.

e Thus, k components can be connected by changing 2k spots.

edn
Here, k < —, + 50 2k < edn .

55

Testing Connectedness: Proof of Claim 2
(Claim 1 \

Llf G is e-far from connected, it has > SdT" connected componentsJ

Claim 2 N

. - ed
If G is e-far from connected, it has > Tn connected components

S of size at most 4/¢d. S

e If Claim 1 holds, there are at least ngn connected components.
2
edn/2 T ed
e By an averaging argument (or Markov inequality), at least half of the
components are of size at most twice the average.

e Their average size <

56

Testing if a Graph i1s Connected [Goldreich Ron]

Input: a graph ¢ = (V, E) on n vertices
e in adjacency lists representation v Y’
(a list of neighbors for each vertex) .\. .\.

e maximum degree d

Connected or
e-far from connected?
1 ..
0 (T) time J
e-d
(no dependence on n)

S7

Approximating # of Connected Components

[Chazelle Rubinfeld Trevisan]

Input: a graph ¢ = (V, E) on n vertices v

e in adjacency lists representation v
(a list of neighbors for each vertex) .\.

e maximum degree d \

Exact Answer: QQ(dn) time

Additive approximation: # of CC ten
with probability > 2/3

Time:
d 1 d
e Known: O (e—zlog E)’ Q(S—z)
- T 0(3)
: "

58

Approximating # of CCs: Main ldea

e Let C = number of components

e For every vertex u, define
n, = number of nodes in u’s component

Breaks C up into
contributions
of different nodes

— for each component A: Y ,c4 =1

ny

e Estimate this sum by estimating 1,’s for a few random nodes
— If u’s component is small, its size can be computed by BFS.

— If u’s component is big, then 1/n ,is small, so it does not
contribute much to the sum

— Can stop BFS after a few steps

Similar to property tester for connectedness [Goldreich Ron]
59

Approximating # of CCs: Algorithm

Estimating n,, = the number of nodes in u’s component:

: ~ : 2
e |etestimate 1, = min {nu;}

— When u’s component has < 2/e nodes, ,, = ny,

— Else n,, = 2/g, andsoO<———<—=§

ny ny ny

. Corresponding estimate for Cis C = Yuev Ai

1

1

nu

&
< —
2

It is a good estimate:

‘Zuev ZueV — - n_u = ?
/APPROX_# CCs (G, d,) I
1. Repeat s=0(1/g?) times:
2. pick a random vertex u
3. compute 7, via BFS from u, stopping after at most 2/ new nodes
\4. Return C = (average of the values 1/71,,) - n)

Run time: O(d /&)

60

Approximating # of CCs: Analysis

Want to show: Pr“C C| <§ /
i I
Hoeffdmg Bound
Let Yy, ..., Y be independently distributed random variables in [0,1] and
S
letY = Y Y; (sample sum). Then Pr[|]Y — E[Y]]| = §] < 2e~28%/s,
i=1 J

Let Y; = 1/7,for the it" vertex u in the sample

> ¢ S 1 1 sC
Y= XY= andElY] = REN]=s-EYi] =5 Tuevz- =
1= = u

g2

EY—EE[Y]‘ 7—Pr[|Y E[Y]] >]<Ze 2

€7s

Pr“C C| ——Pr
1

e Needs =0 (5_12) samples to get probability < 3

61

Approximating # of CCs: Analysis

)
S

So far: C-C S;
Pr(|C - C| > <2
2 3
e With probability 2% J
C—c|<|C-C|+ <—+—<en

Summary:
The number of connected components in n-vetex graphs of

d
degree at most d can be estimated within +&n in time O (83)

62

Minimum spanning tree (MST)

e What is the cheapest way to connect all the dots?
Input: a weighted graph
with n vertices and m edges 3 o

e Exact computation:
— Deterministic O(m - inverse-Ackermann(m)) time [Chazelle]
— Randomized O(m) time [Karger Klein Tarjan]

63

Approximating MST Weight in Sublinear Time

[Chazelle Rubinfeld Trevisan]

Input: a graph ¢ = (V, E) on n vertices

* in adjacency lists representation

e maximum degree d and maximum allowed weight w
e weightsin{1,2,...,w}

Output: (1+ €)-approximation to MST weight, w;;¢r

Time: —
No dependence on n!
e Known: O (d—vgvlogd—w), Q(d—vzv) P
E E E
4
e Today: O (dw i‘;gw)

64

Idea Behind Algorithm

e Characterize MST weight in terms of number of connected
components in certain subgraphs of G

e Already know that number of connected components can be
estimated quickly

65

MST and Connected Components: Warm-up

e Recall Kruskal’s algorithm for computing MST exactly. .

Suppose all weights are 1 or 2. Then MST weight
= (# weight-1 edges in MST) + 2 - (# weight-2 edges in MST)
= n-1 + (# of weight-2 edges in MST) MST has n — 1 edges
= n- 1 + (# of CCsinduced by weight-1 edges) —1 By Kruskal

N

weight 1
: connected components MST

weight 2 induced by weight-1 edges

C:/Users/sofya/Documents/svn-cse/Madhav-all/sublinear-algo-course-slides-WIM2011/kruskal-demonstration.ppt

MST and Connected Components

In general: Let GG; = subgraph of ¢ containing all edges of weight < i
C; = number of connected components in G;

Then MST has C; — 1 edges of weight > .

" Claim A J
w-1
wyst(G) =n—w+ z C;
- =1 J
e Let 3; be the number of edges of weight > i in MST
e Each MST edge contributes 1 to wy,sr, each MST edge of weight >1

contributes 1 more, each MST edge of weight >2 contributes one more, ...

w-1 w-1 w-1 w-1
wusr(©) =) Bi=) (G=D=-w+ Y G=n-w+) G
=0 =0 =0 i=1

Algorithm for Approximating wy st

(APPROX_MSTweight (G, w, d, €)) [Claim. wysr(G) =n—w+Y¥31¢;]
1. Fori=1tow — 1do:
2. C; —APPROX_#CCs(G; ,d, e/w)

(3. Return Wyst =n—w+Y¥:1C Y
Analysis:

A,
&l

Suppose all estimates of C;’s are good: |C —C: | < %
Then [Wysr — Wystl = | 271 (G—=C)| < XV G —Cl <w-

Prlall w — 1 estimates are good]= (2/3)" !

&
—NnNn=&en
w

Not good enough! Need error probability < $ for each iteration

Then, by Union Bound, Pr[error]< w - $ — %

Can amplify success probability of any algorithm by repeating it and taking
the median answer.

Can take more samples in APPROX_#CCs. What’s the resulting run time?

68

Multiplicative Approximation for wygr

For MST cost, additive approximation = multiplicative approximation
Wyst=n—1 = wygr=n/2forn=>2

* ¢n-additive approximation:

WysTt — EN < Wygr < Wyor + EN

* (1 + Z¢&)-multiplicative approximation:
Wyst (1 —2¢&) S wygr — en < Wygr < Wysr + en < wyer(1 + 2¢)

69

