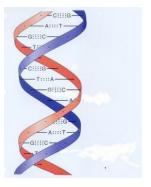
Motivation for Sublinear-Time Algorithms

Massive datasets

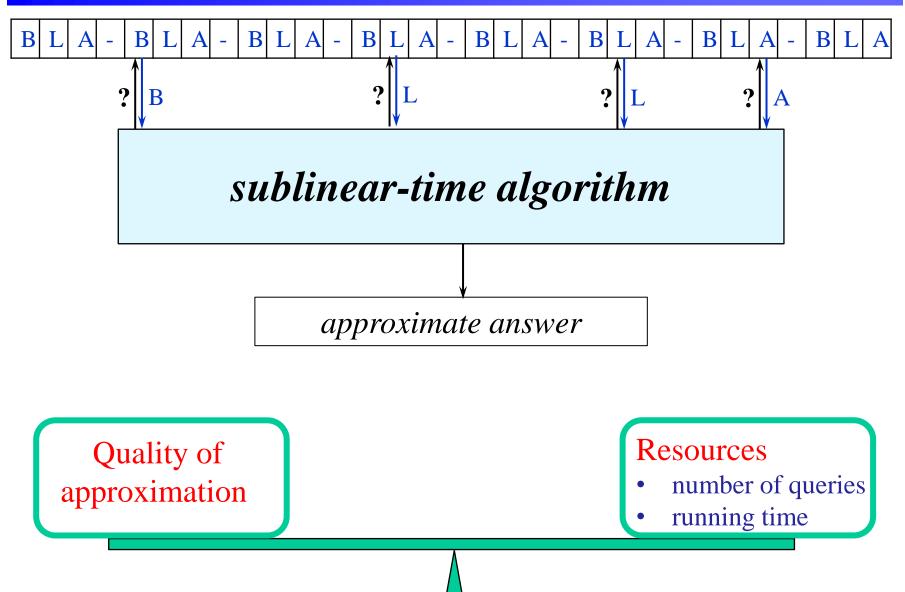
- world-wide web
- online social networks
- genome project
- sales logs
- census data
- high-resolution images
- scientific measurements
- Long access time
- communication bottleneck (slow connection)
- implicit data (an experiment per data point)



What Can We Hope For?

- What can an algorithm compute if it
 - reads only a sublinear portion of the data?
 - runs in **sublinear** time?
- Some problems have exact deterministic solutions
- For most interesting problems algorithms must be
 - approximate
 - randomized

A Sublinear-Time Algorithm



Types of Approximation

Classical approximation

- need to compute a value
 - output should be close to the desired value
 - example: average

Property testing

need to answer YES or NO

Intuition: only require correct answers on two sets of instances that are very different from each other

Classical Approximation

A Simple Example

Approximate Diameter of a Point Set [Indyk]

Input: *m* points, described by a distance matrix *D*

- D_{ij} is the distance between points *i* and *j*
- D satisfies triangle inequality and symmetry (Note: input size is $n = m^2$)
- Let *i*, *j* be indices that maximize D_{ij} . Maximum D_{ij} is the *diameter*.
- Output: (k, ℓ) such that $D_{k\ell} \ge D_{ij}/2$

Algorithm and Analysis

Algorithm (m, D)

- 1. Pick k arbitrarily
- 2. Pick ℓ to maximize $D_{k\ell}$
- 3. Output (k, ℓ)
- Approximation guarantee $D_{ij} \leq D_{ik} + D_{kj}$ (triangle inequality) $\leq D_{k\ell} + D_{k\ell}$ (choice of ℓ + symmetry of D) k $\leq 2Dk_{\ell}$
- Running time: $O(m) = O(m = \sqrt{n})$

A rare example of a deterministic sublinear-time algorithm

Property Testing

Property Testing: YES/NO Questions

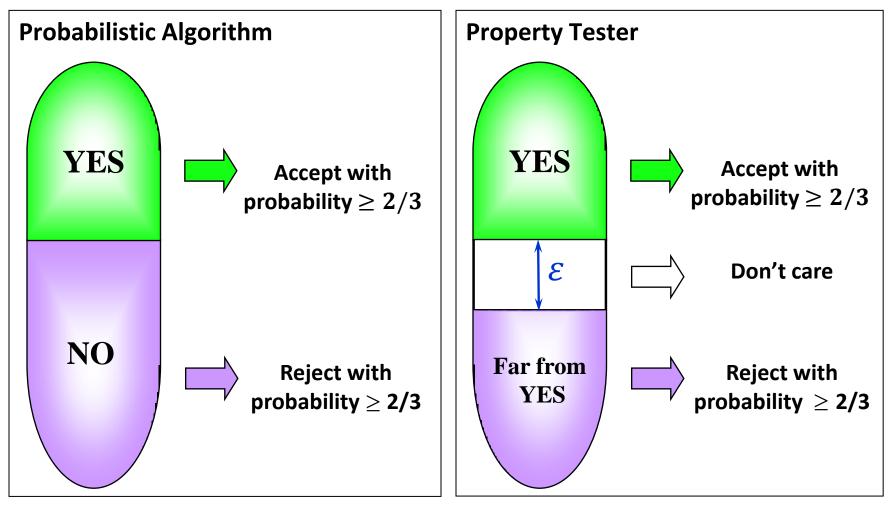
Does the input satisfy some property? (YES/NO)

"in the ballpark" vs. "out of the ballpark"

Does the input satisfy the property or is it far from satisfying it?

- sometimes it is the right question (probabilistically checkable proofs (PCPs))
- as good when the data is constantly changing (WWW)
- fast sanity check to rule out inappropriate inputs (airport security questioning)

Property Tester Definition



 ε -far = differs in many places ($\geq \varepsilon$ fraction of places)

Randomized Sublinear Algorithms

Toy Examples

Property Testing: a Toy Example

Input: a string $w \in \{0,1\}^n$

Question: Is $w = 00 \dots 0$?

Requires reading entire input.

Approximate version: Is $w = 00 \dots 0$ or

does it have $\geq \varepsilon n$ 1's ("errors")?

1

 \mathbf{O}

()

 $\mathbf{0}$

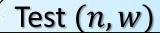
1

 \mathbf{O}

0

...

Used: $1 - x \le e^{-x}$



1. Sample $s = 2/\varepsilon$ positions uniformly and independently at random

2. If 1 is found, **reject**; otherwise, **accept**

Analysis: If $w = 00 \dots 0$, it is always accepted.

If w is ε -far, Pr[error] = Pr[no 1's in the sample] $\leq (1-\varepsilon)^s \leq e^{-\varepsilon s} = e^{-2} < \frac{1}{2}$

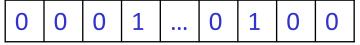
Witness Lemma

If a test catches a witness with probability $\geq p$,

then $s = \frac{2}{p}$ iterations of the test catch a witness with probability $\geq 2/3$.

Randomized Approximation: a Toy Example

Input: a string $w \in \{0,1\}^n$



Goal: Estimate the fraction of 1's in w (like in polls)

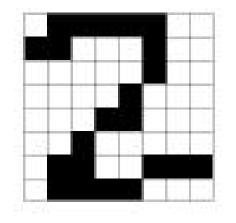
It suffices to sample $s = 1 / \epsilon^2$ positions and output the average to get the fraction of 1's $\pm \epsilon$ (i.e., additive error ϵ) with probability $\geq 2/3$

Hoeffding BoundLet $Y_1, ..., Y_s$ be independently distributed random variables in [0,1] andlet $Y = \sum_{i=1}^{s} Y_i$ (sample sum). Then $\Pr[|Y - E[Y]| \ge \delta] \le 2e^{-2\delta^2/s}$. Y_i = value of sample i. Then $E[Y] = \sum_{i=1}^{s} E[Y_i] = s \cdot (\text{fraction of 1's in } w)$ $\Pr[|(\text{sample average}) - (\text{fraction of 1's in } w)| \ge \varepsilon] = \Pr[|Y - E[Y]| \ge \varepsilon s]$ $\le 2e^{-2\delta^2/s} = 2e^{-2} < 1/3$ Apply Hoeffding Bound with $\delta = \varepsilon s$

Property Testing

Simple Examples

Testing Properties of Images



Pixel Model

Input: $n \times n$ matrix of pixels (0/1 values for black-and-white pictures)

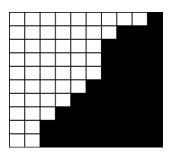


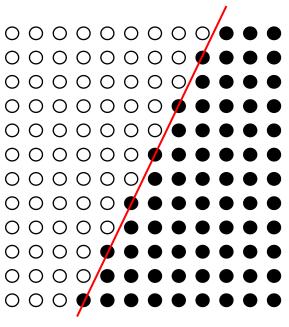
Query: point (i_1, i_2) Answer: color of (i_1, i_2)

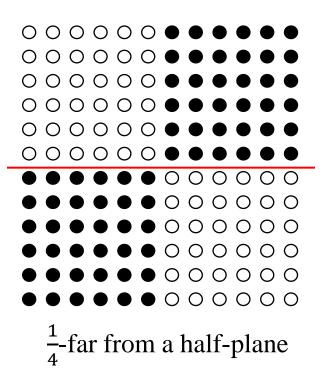
Testing if an Image is a Half-plane [R03]

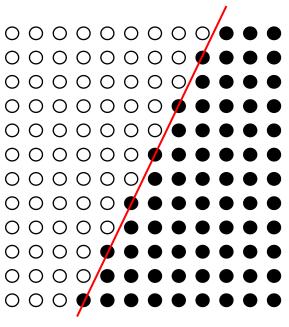
A half-plane or ε -far from a half-plane?

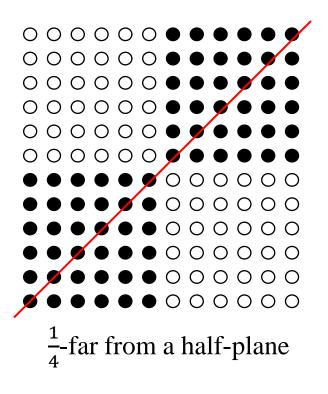
 $O(1/\varepsilon)$ time

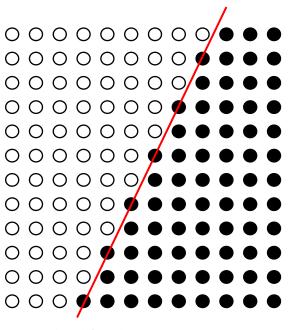


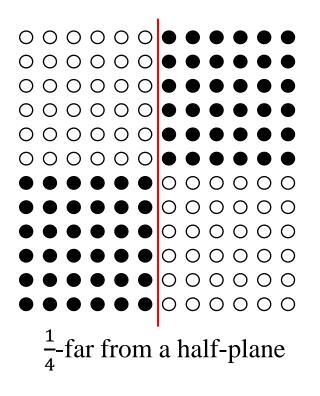


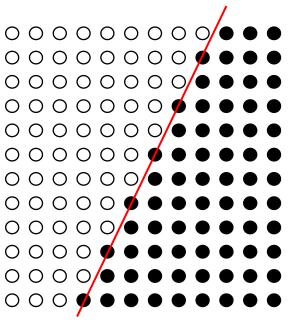


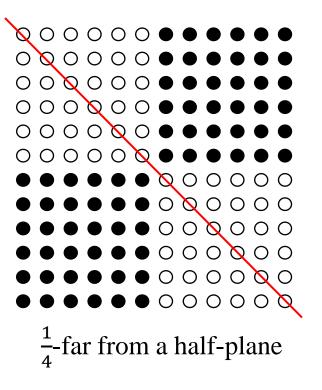


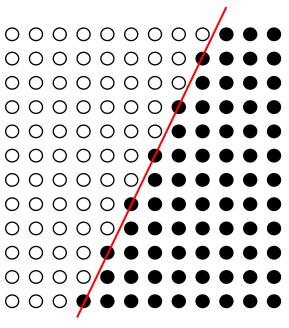


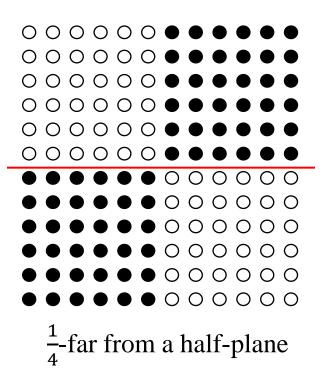


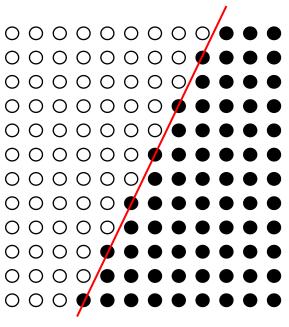


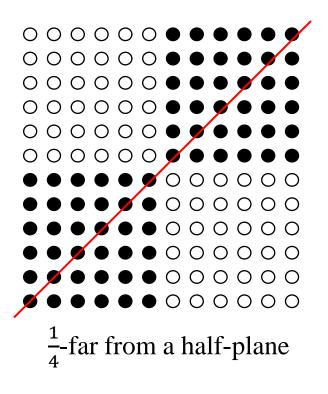


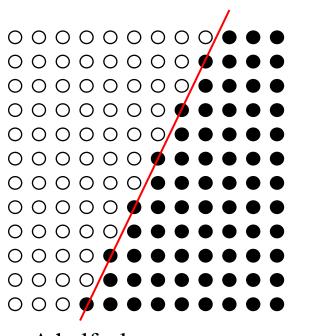


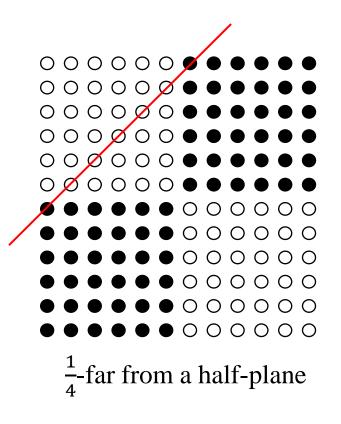










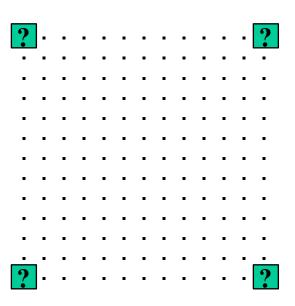


"Testing by implicit learning" paradigm

- Learn the outline of the image by querying a few pixels.
- Test if the image conforms to the outline by random sampling, and reject if something is wrong.

Half-plane Test

Claim. The number of sides with different corners is 0, 2, or 4.



Algorithm

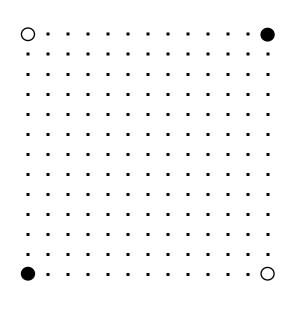
1. Query the corners.

Half-plane Test: 4 Bi-colored Sides

Claim. The number of sides with different corners is 0, 2, or 4.

Analysis

• If it is 4, the image cannot be a half-plane.



Algorithm

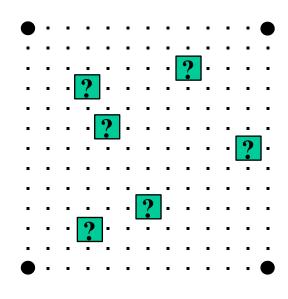
- 1. Query the corners.
- 2. If the number of sides with different corners is 4, reject.

Half-plane Test: 0 Bi-colored Sides

Claim. The number of sides with different corners is 0, 2, or 4.

Analysis

• If all corners have the same color, the image is a half-plane if and only if it is unicolored.



Algorithm

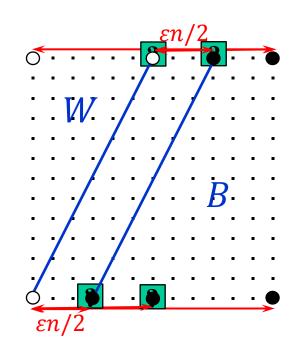
- 1. Query the corners.
- If all corners have the same color c, test if all pixels have color c (as in Toy Example 1).

Half-plane Test: 2 Bi-colored Sides

Claim. The number of sides with different corners is 0, 2, or 4.

Analysis

- The area outside of $W \cup B$ has $\leq \epsilon n^2/2$ pixels.
- If the image is a half-plane, W contains only white pixels and B contains only black pixels.
- If the image is ε -far from half-planes, it has $\ge \varepsilon n^2/2$ wrong pixels in $W \cup B$.
- By Witness Lemma, 4/ε samples suffice to catch a wrong pixel.

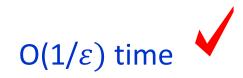


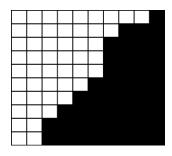
Algorithm

- 1. Query the corners.
- 2. If # of sides with different corners is 2, on both sides find 2 different pixels within distance $\epsilon n/2$ by binary search.
- 3. Query $4/\varepsilon$ pixels from $W \cup B$
- 4. Accept iff all *W* pixels are white and all *B* pixels are black.

Testing if an Image is a Half-plane [R03]

A half-plane or ε -far from a half-plane?





Other Results on Properties of Images

• Pixel Model

Convexity [Berman Murzabulatov R] Convex or ε -far from convex? O(1/ ε) time

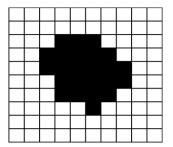
Connectedness [Berman Murzabulatov R] Connected or ε -far from connected? O($1/\varepsilon^{3/2} \sqrt{\log 1/\varepsilon}$) time

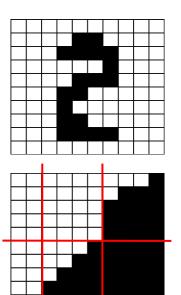
Partitioning [Kleiner Keren Newman 10]

Can be partitioned according to a template or is ε -far?

time independent of image size

• Properties of sparse images [Ron Tsur 10]





Testing if a List is Sorted

Input: a list of *n* numbers $x_1, x_2, ..., x_n$

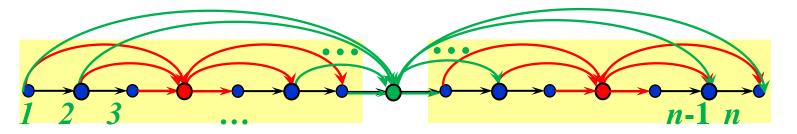
- Question: Is the list sorted?
 Requires reading entire list: Ω(n) time
- Approximate version: Is the list sorted or ε-far from sorted? (An ε fraction of x_i's have to be changed to make it sorted.) [Ergün Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01]: O((log n)/ε) time Ω(log n) queries

• Attempts:

- \leftarrow 1/2-far from sorted
- 2. Test: Pick random i < j and reject if $x_i > x_j$. Fails on: 10213243546576

 \leftarrow 1/2-far from sorted

Idea: Associate positions in the list with vertices of the directed line.



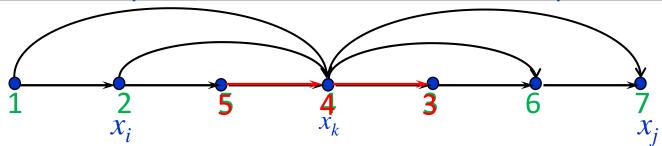
Construct a graph (2-spanner)

 $\leq n \log n$ edges

- by adding a few "shortcut" edges (*i*, *j*) for *i* < *j*
- where each pair of vertices is connected by a path of length at most 2

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Pick a random edge (x_i, x_j) from the 2-spanner and **reject** if $x_i > x_j$.



Analysis:

- Call an edge (x_i, x_j) violated if $x_i > x_j$, and good otherwise.
- If x_i is an endpoint of a **violated** edge, call it **bad**. Otherwise, call it **good**.

Claim 1. All good numbers x_i are sorted.

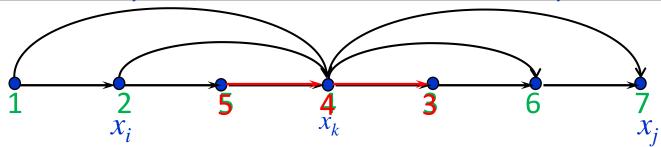
Proof: Consider any two good numbers, x_i and x_j .

They are connected by a path of (at most) two **good** edges (x_i, x_k) , (x_k, x_j) . $\Rightarrow x_i \le x_k$ and $x_k \le x_j$

 $\Rightarrow x_i \leq x_j$

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Pick a random edge (x_i, x_i) from the 2-spanner and **reject** if $x_i > x_i$.



Analysis:

- Call an edge (x_i, x_j) violated if $x_i > x_j$, and good otherwise.
- If x_i is an endpoint of a **bad** edge, call it **bad**. Otherwise, call it **good**.

Claim 1. All good numbers x_i are sorted.

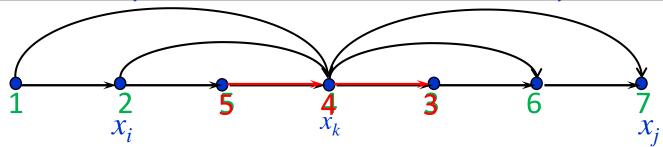
Claim 2. An ϵ -far list violates $\geq \epsilon / (2 \log n)$ fraction of edges in 2-spanner.

Proof: If a list is ϵ -far from sorted, it has $\geq \epsilon n$ bad numbers. (Claim 1)

- Each violated edge contributes 2 bad numbers.
- 2-spanner has $\geq \epsilon n/2$ violated edges out of $\leq n \log n$.

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Pick a random edge (x_i, x_i) from the 2-spanner and **reject** if $x_i > x_i$.



Analysis:

• Call an edge (x_i, x_j) violated if $x_i > x_j$, and good otherwise.

Claim 2. An ϵ -far list violates $\geq \epsilon / (2 \log n)$ fraction of edges in 2-spanner.

By Witness Lemma, it suffices to sample $(4 \log n)/\epsilon$ edges from 2-spanner.

Algorithm

Sample (4 log n)/ ϵ edges (x_i, x_i) from the 2-spanner and reject if $x_i > x_i$.

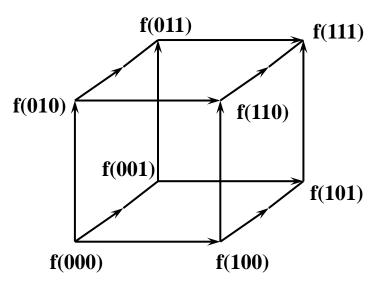
Guarantee: All sorted lists are accepted.

All lists that are ϵ -far from sorted are rejected with probability $\geq 2/3$. Time: O((log n)/ ϵ)

Basic Properties of Functions

Boolean Functions $f : \{0, 1\}^n \rightarrow \{0, 1\}$

Graph representation: *n*-dimensional hypercube



011001

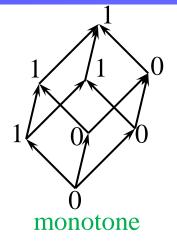
y

- vertices: bit strings of length *n*
- edges: (x, y) is an edge if y can be obtained from x by increasing one bit from 0 to 1 x 001001
- each vertex x is labeled with f(x)

Monotonicity of Functions

[Goldreich Goldwasser Lehman Ron Samorodnitsky, Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky]

A function f : {0,1}ⁿ → {0,1} is monotone
 if increasing a bit of x does not decrease f(x).



• Is f monotone or ε -far from monotone

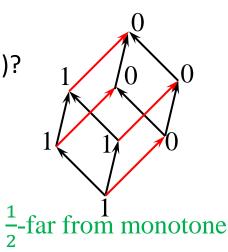
(f has to change on many points to become monontone)?

- Edge $x \rightarrow y$ is violated by f if f(x) > f(y).

Time:

- $O(n/\varepsilon)$, logarithmic in the size of the input, 2^n
- $\Omega(\sqrt{n}/\varepsilon)$ for restricted class of tests
- Recent: $\Theta(\sqrt{n}/\varepsilon^2)$ for nonadaptive tests

[Khot Minzer Safra 15, Chen De Servidio Tang 15]



Monotonicity Test [GGLRS, DGLRRS]

Idea: Show that functions that are far from monotone violate many edges.

EdgeTest (f, ε)

- 1. Pick $2n/\epsilon$ edges (x, y) uniformly at random from the hypercube.
- **2.** Reject if some (x, y) is violated (i.e. f(x) > f(y)). Otherwise, accept.

Analysis

- If *f* is monotone, **EdgeTest** always accepts.
- If f is ε -far from monotone, by Witness Lemma, it suffices to show that $\geq \varepsilon/n$ fraction of edges (i.e., $\frac{\varepsilon}{n} \cdot 2^{n-1}n = \varepsilon 2^{n-1}$ edges) are violated by f.

- Let V(f) denote the number of edges violated by f.

Contrapositive: If $V(f) < \varepsilon 2^{n-1}$,

f can be made monotone by changing $< \varepsilon 2^n$ values.

Repair Lemma

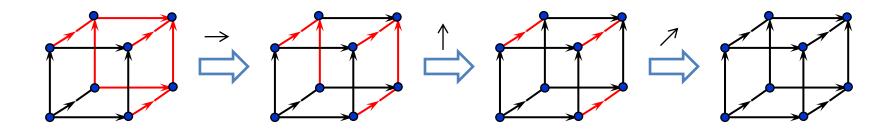
f can be made monotone by changing $\leq 2 \cdot V(f)$ values.

Repair Lemma: Proof Idea

Repair Lemma

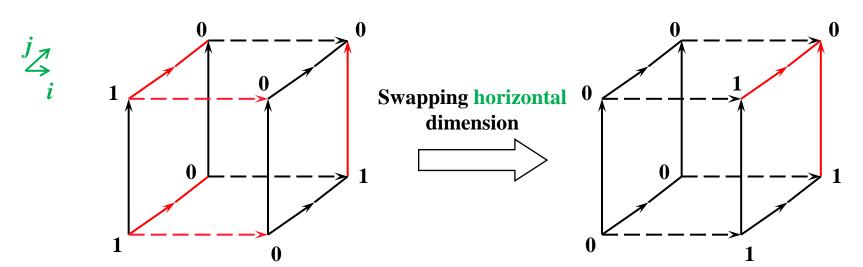
f can be made monotone by changing $\leq 2 \cdot V(f)$ values.

Proof idea: Transform *f* into a monotone function by repairing edges in one dimension at a time.



Repairing Violated Edges in One Dimension

Swap violated edges $1 \rightarrow 0$ in one dimension to $0 \rightarrow 1$.

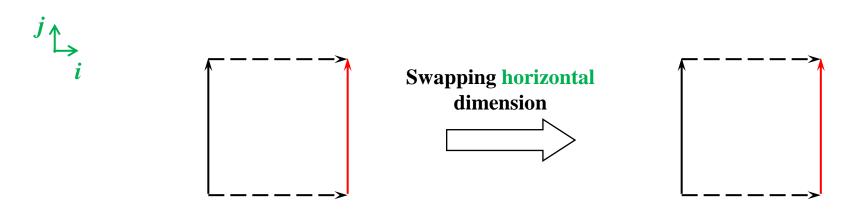


Let V_j = # of violated edges in dimension j

Claim. Swapping in dimension *i* does not increase V_i for all dimensions $j \neq i$

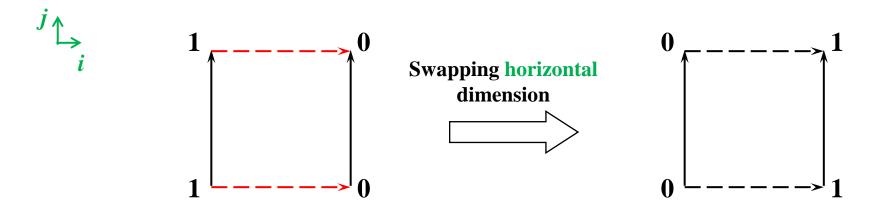
Enough to prove the claim for squares

Claim. Swapping in dimension *i* does not increase V_i for all dimensions $j \neq i$



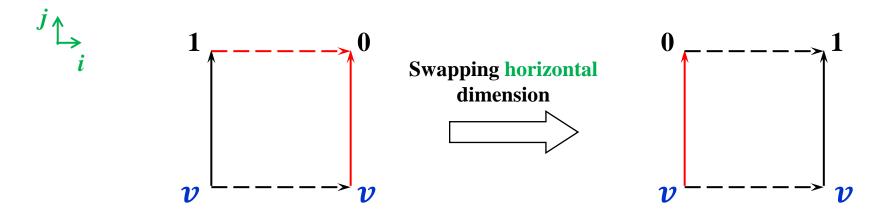
• If no horizontal edges are violated, no action is taken.

Claim. Swapping in dimension *i* does not increase V_i for all dimensions $j \neq i$



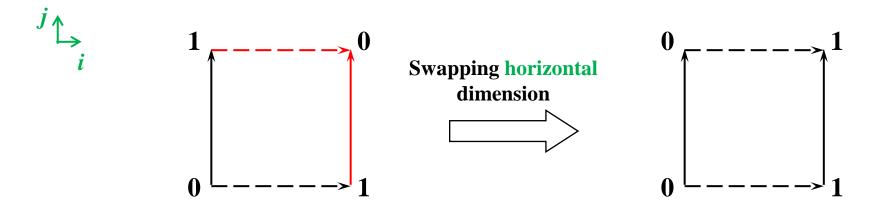
• If both horizontal edges are violated, both are swapped, so the number of vertical violated edges does not change.

Claim. Swapping in dimension *i* does not increase V_i for all dimensions $j \neq i$



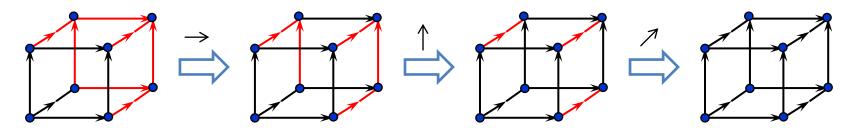
- Suppose one (say, top) horizontal edge is violated.
- If both bottom vertices have the same label, the vertical edges get swapped.

Claim. Swapping in dimension *i* does not increase V_i for all dimensions $j \neq i$



- Suppose one (say, top) horizontal edge is violated.
- If both bottom vertices have the same label, the vertical edges get swapped.
- Otherwise, the bottom vertices are labeled 0→1, and the vertical violation is repaired.

Claim. Swapping in dimension *i* does not increase V_j for all dimensions $j \neq i$



After we perform swaps in all dimensions:

- *f* becomes monotone
- # of values changed:

 $2 \cdot V_1 + 2 \cdot (\# \text{ violated edges in dim 2 after swapping dim 1})$ + 2 \cdot (# violated edges in dim 3 after swapping dim 1 and 2) + ... $\leq 2 \cdot V_1 + 2 \cdot V_2 + \cdots 2 \cdot V_n = 2 \cdot V(f)$

Repair Lemma

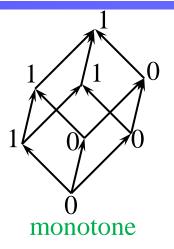
f can be made monotone by changing $\leq 2 \cdot V(f)$ values.

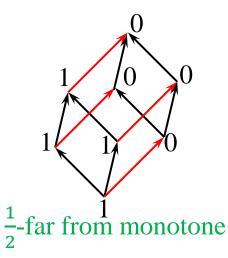
Improve the bound by a factor of 2.

Testing if a Functions $f : \{0,1\}^n \rightarrow \{0,1\}$ is monotone

Monotone or ε -far from monotone?

O(n/ε) time (logarithmic in the size of the input)



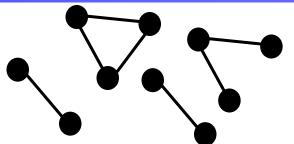


Graph Properties

Testing if a Graph is Connected [Goldreich Ron]

Input: a graph G = (V, E) on n vertices

in adjacency lists representation
 (a list of neighbors for each vertex)



- maximum degree d, i.e., adjacency lists of length d with some empty entries Query (v, i), where $v \in V$ and $i \in [d]$: entry i of adjacency list of vertex vExact Answer: $\Omega(dn)$ time
- Approximate version:

Is the graph connected or ϵ -far from connected? dist $(G_1, G_2) = \frac{\# \ of \ entires \ in \ adjacency \ lists \ on \ which \ G_1 \ and \ G_2 \ differ}{dn}$ Time: $O\left(\frac{1}{\varepsilon^2 d}\right)$ today

Testing Connectedness: Algorithm

Connectedness Tester(G, d, ε)

- **1. Repeat** s=8/ɛd times:
- 2. pick a random vertex *u*
- 3. determine if connected component of *u* is small:

perform BFS from *u*, stopping after at most 4/ɛd new nodes

4. Reject if a small connected component was found, otherwise accept.

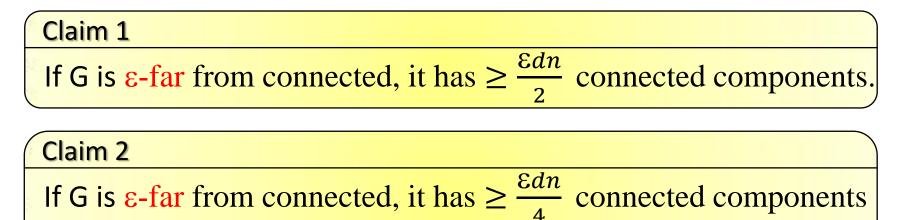
Run time: $O(d/\epsilon^2 d^2) = O(1/\epsilon^2 d)$

Analysis:

- Connected graphs are always accepted.
- Remains to show:

If a graph is ϵ -far from connected, it is rejected with probability $\geq \frac{2}{2}$

Testing Connectedness: Analysis



• If Claim 2 holds, at least $\frac{\mathcal{E}dn}{4}$ nodes are in small connected components.

• By Witness lemma, it suffices to sample $\frac{2 \cdot 4}{\epsilon dn/n} = \frac{8}{\epsilon d}$ nodes to detect one from a small connected component.

Testing Connectedness: Proof of Claim 1

Claim 1	
If G is $\frac{\varepsilon - far}{2}$ from connected, it has $\geq \frac{\varepsilon dn}{2}$ connected compo	nents.

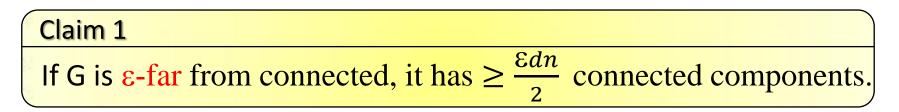
We prove the **contrapositive**:

If G has $<\frac{\varepsilon dn}{2}$ connected components, one can make G connected by modifying $< \varepsilon$ fraction of its representation, i.e., $< \varepsilon dn$ entries.

- If there are no degree restrictions, k components can be connected by adding k-1 edges, each affecting 2 nodes. Here, $k < \frac{\varepsilon dn}{2}$, so $2k-2 < \varepsilon dn$.
- What if adjacency lists of all vertices in a component are full,

i.e., all vertex degrees are d?

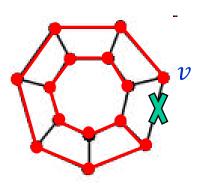
Freeing up an Adjacency List Entry



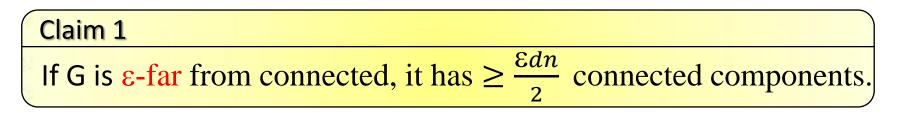
What if adjacency lists of all vertices in a component are full,

i.e., all vertex degrees are d?

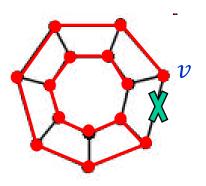
- Consider an MST of this component.
- Let v be a leaf of the MST.
- Disconnect v from a node other than its parent in the MST.
- Two entries are changed while keeping the same number of components.



Freeing up an Adjacency List Entry



What if adjacency lists of all vertices in a component are full, i.e., all vertex degrees are d?



- Apply this to each component that <2 free spots in adjacency lists.
- Now we can connect all the components using the freed up spots while ensuring that we never change more than 2 spots per component.
- Thus, k components can be connected by changing 2k spots.

Here,
$$k < \frac{\varepsilon dn}{4}$$
, so $2k < \varepsilon dn$.

Testing Connectedness: Proof of Claim 2

Claim 1 If G is ε -far from connected, it has $\geq \frac{\varepsilon dn}{2}$ connected components.

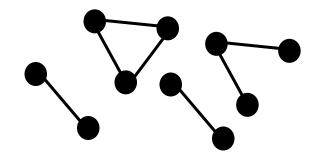
Claim 2 If G is ϵ -far from connected, it has $\geq \frac{\epsilon dn}{4}$ connected components of size at most 4/ ϵ d.

- If Claim 1 holds, there are at least $\frac{\varepsilon dn}{2}$ connected components.
- Their average size $\leq \frac{n}{\epsilon dn/2} = \frac{2}{\epsilon d}$.
- By an averaging argument (or Markov inequality), at least half of the components are of size at most twice the average.

Testing if a Graph is Connected [Goldreich Ron]

Input: a graph G = (V, E) on n vertices

- in adjacency lists representation
 (a list of neighbors for each vertex)
- maximum degree *d*



Connected or

 ε -far from connected?

$$O\left(\frac{1}{\varepsilon^2 d}\right)$$
 time (no dependence on n)

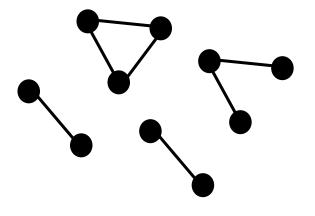
Approximating # of Connected Components

[Chazelle Rubinfeld Trevisan]

Input: a graph G = (V, E) on **n** vertices

- in adjacency lists representation
 (a list of neighbors for each vertex)
- maximum degree *d*

Exact Answer: $\Omega(dn)$ time Additive approximation: # of CC ± ϵ n with probability $\geq 2/3$



Time:

- Known: $O\left(\frac{d}{\epsilon^2}\log\frac{1}{\epsilon}\right), \Omega\left(\frac{d}{\epsilon^2}\right)$
- Today: $O\left(\frac{d}{\varepsilon^3}\right)$.

Partially based on slides by Ronitt Rubinfeld: http://stellar.mit.edu/S/course/6/fa10/6.896/courseMaterial/topics/topic3/lectureNotes/lecst11/lecst11.pdf

Approximating # of CCs: Main Idea

- Let *C* = number of components
- For every vertex u, define n_u = number of nodes in u's component Breaks C up into
 - for each component **A**: $\sum_{u \in A} \frac{1}{n_u} = 1$ $\sum_{u \in V} \frac{1}{n_u} = C$
- Estimate this sum by estimating n_u 's for a few random nodes
 - If u's component is small, its size can be computed by BFS.
 - If u's component is big, then $1/n_u$ is small, so it does not contribute much to the sum
 - Can stop BFS after a few steps

Similar to property tester for connectedness [Goldreich Ron]

contributions

<u>of</u> different nodes

Approximating # of CCs: Algorithm

Estimating n_u = the number of nodes in u's component:

Let estimate $\hat{n}_u = \min\left\{n_u, \frac{2}{c}\right\}$ •

- $\text{ When } u \text{'s component has } \leq 2/\epsilon \text{ nodes }, \hat{n}_u = n_u \\ \text{ Else } \hat{n}_u = 2/\epsilon, \text{ and so } 0 < \frac{1}{\hat{n}_u} \frac{1}{n_u} < \frac{1}{\hat{n}_u} = \frac{\epsilon}{2} \\ \end{array} \right\} \left| \frac{1}{\hat{n}_u} \frac{1}{n_u} \right| \leq \frac{\epsilon}{2}$
- Corresponding estimate for C is $\hat{C} = \sum_{u \in V} \frac{1}{\hat{n}_{u}}$. It is a good estimate:

$$\left| \hat{C} - C \right| = \left| \sum_{u \in V} \frac{1}{\hat{n}_u} - \sum_{u \in V} \frac{1}{n_u} \right| \le \sum_{u \in V} \left| \frac{1}{\hat{n}_u} - \frac{1}{n_u} \right| \le \frac{\varepsilon n}{2}$$

´APPROX_#_CCs (G, d, ε)

- **Repeat** $s=\Theta(1/\epsilon^2)$ times: 1.
- pick a random vertex u 2.
- compute \hat{n}_u via BFS from u, stopping after at most $2/\epsilon$ new nodes 3.
- **Return** \tilde{C} = (average of the values $1/\hat{n}_{\mu}$) $\cdot n$ 4.

Run time: O(d $/\epsilon^3$)

Approximating # of CCs: Analysis

Want to show:
$$\Pr\left[\left|\tilde{C} - \hat{C}\right| > \frac{\varepsilon n}{2}\right] \le \frac{1}{3}$$

Hoeffding Bound

Let $Y_1, ..., Y_s$ be independently distributed random variables in [0,1] and let $Y = \sum_{i=1}^{s} Y_i$ (sample sum). Then $\Pr[|Y - E[Y]| \ge \delta] \le 2e^{-2\delta^2/s}$.

Let $Y_i = 1/\hat{n}_u$ for the ith vertex u in the sample

•
$$\mathbf{Y} = \sum_{i=1}^{s} \mathbf{Y}_{i} = \frac{s\tilde{c}}{n}$$
 and $\mathbf{E}[\mathbf{Y}] = \sum_{i=1}^{s} \mathbf{E}[\mathbf{Y}_{i}] = s \cdot \mathbf{E}[\mathbf{Y}_{1}] = s \cdot \frac{1}{n} \sum_{u \in V} \frac{1}{\hat{n}_{u}} = \frac{s\hat{c}}{n}$
 $\Pr\left[\left|\tilde{c} - \hat{c}\right| > \frac{\varepsilon n}{2}\right] = \Pr\left[\left|\frac{n}{s}\mathbf{Y} - \frac{n}{s}\mathbf{E}[\mathbf{Y}]\right| > \frac{\varepsilon n}{2}\right] = \Pr\left[|\mathbf{Y} - \mathbf{E}[\mathbf{Y}]| > \frac{\varepsilon s}{2}\right] \le 2e^{-\frac{\varepsilon^{2}s}{2}}$
• Need $s = \Theta\left(\frac{1}{\varepsilon^{2}}\right)$ samples to get probability $\le \frac{1}{3}$

Approximating # of CCs: Analysis

So far:
$$|\hat{C} - C| \leq \frac{\varepsilon n}{2}$$

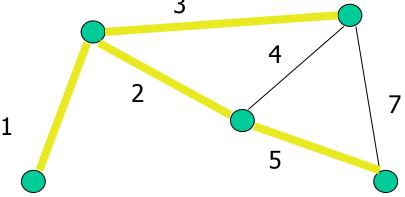
 $\Pr\left[|\tilde{C} - \hat{C}| > \frac{\varepsilon n}{2}\right] \leq \frac{1}{3}$
• With probability $\geq \frac{2}{3}$,
 $|\tilde{C} - C| \leq |\tilde{C} - \hat{C}| + |\hat{C} - C| \leq \frac{\varepsilon n}{2} + \frac{\varepsilon n}{2} \leq \varepsilon n$

Summary:

The number of connected components in *n*-vetex graphs of degree at most *d* can be estimated within $\pm \varepsilon n$ in time $O\left(\frac{d}{\varepsilon^3}\right)$.

Minimum spanning tree (MST)

What is the cheapest way to connect all the dots?
 Input: a weighted graph
 with n vertices and m edges
 3



- Exact computation:
 - Deterministic $O(m \cdot \text{inverse-Ackermann}(m))$ time [Chazelle]
 - Randomized O(m) time [Karger Klein Tarjan]

Approximating MST Weight in Sublinear Time

[Chazelle Rubinfeld Trevisan]

Input: a graph G = (V, E) on n vertices

- in adjacency lists representation
- maximum degree *d* and maximum allowed weight *w*
- weights in {1,2,...,w}

Output: $(1 + \varepsilon)$ -approximation to MST weight, w_{MST}

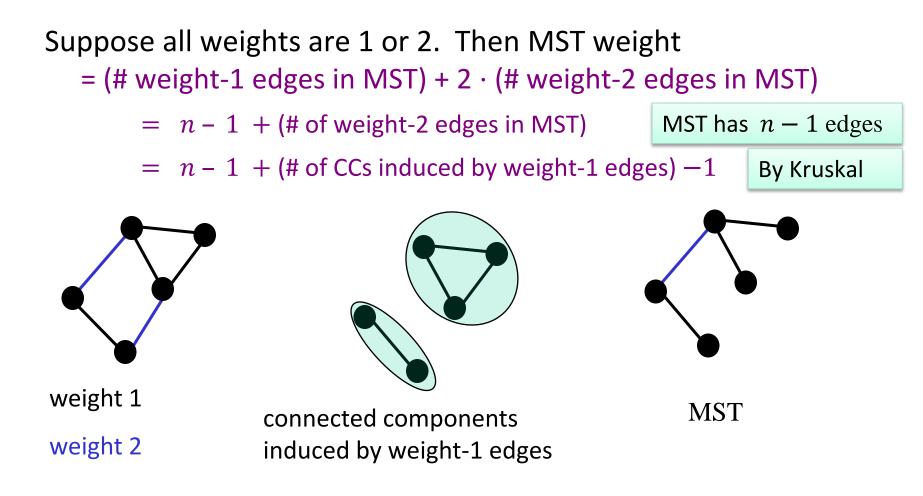
Time:

- Known: $O\left(\frac{dw}{\varepsilon^3}\log\frac{dw}{\varepsilon}\right), \Omega\left(\frac{dw}{\varepsilon^2}\right)$
- Today: $O\left(\frac{dw^4 \log w}{\varepsilon^3}\right)$

- Characterize MST weight in terms of number of connected components in certain subgraphs of *G*
- Already know that number of connected components can be estimated quickly

MST and Connected Components: Warm-up

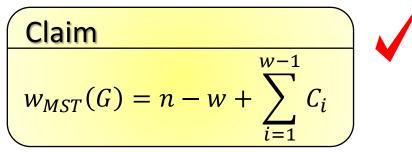
Recall Kruskal's algorithm for computing MST exactly.



MST and Connected Components

In general: Let G_i = subgraph of G containing all edges of weight $\leq i$ C_i = number of connected components in G_i

Then MST has $C_i - 1$ edges of weight > i.



- Let β_i be the number of edges of weight > *i* in MST
- Each MST edge contributes 1 to w_{MST} , each MST edge of weight >1 contributes 1 more, each MST edge of weight >2 contributes one more, ...

$$w_{MST}(G) = \sum_{i=0}^{w-1} \beta_i = \sum_{i=0}^{w-1} (C_i - 1) = -w + \sum_{i=0}^{w-1} C_i = n - w + \sum_{i=1}^{w-1} C_i$$

Algorithm for Approximating W_{MST}

APPROX_MSTweight (G, w, d, ε)

- **1.** For i = 1 to w 1 do:
- 2. $\tilde{C}_i \leftarrow \text{APPROX}_{\#\text{CCs}}(G_i, d, \varepsilon/w).$
- **3.** Return $\widetilde{w}_{MST} = n w + \sum_{i=1}^{w-1} \widetilde{C}_i$.

Analysis:

• Suppose all estimates of C_i 's are good: $|\tilde{C}_i - C_i| \leq \frac{\varepsilon}{w} n$.

Then $|\widetilde{w}_{MST} - w_{MST}| = |\sum_{i=1}^{w-1} (\widetilde{C}_i - C_i)| \le \sum_{i=1}^{w-1} |\widetilde{C}_i - C_i| \le w \cdot \frac{\varepsilon}{w} n = \varepsilon n$

- Pr[all w 1 estimates are good] $\geq (2/3)^{w-1}$
- Not good enough! Need error probability $\leq \frac{1}{3w}$ for each iteration
- Then, by Union Bound, $\Pr[\text{error}] \le w \cdot \frac{1}{3w} = \frac{1}{3}$

Can amplify success probability of any algorithm by repeating it and taking the median answer.

Can take more samples in APPROX_#CCs. What's the resulting run time?

Claim.
$$w_{MST}(G) = n - w + \sum_{i=1}^{w-1} C_i$$

Multiplicative Approximation for W_{MST}

For MST cost, additive approximation \Rightarrow multiplicative approximation $w_{MST} \ge n-1 \implies w_{MST} \ge n/2$ for $n \ge 2$

• *ɛn*-additive approximation:

$$w_{MST} - \varepsilon n \le \widehat{w}_{MST} \le w_{MST} + \varepsilon n$$

• $(1 \pm 2\varepsilon)$ -multiplicative approximation: $w_{MST}(1 - 2\varepsilon) \le w_{MST} - \varepsilon n \le \widehat{w}_{MST} \le w_{MST} + \varepsilon n \le w_{MST}(1 + 2\varepsilon)$