CIS 700:
“algorithms for Big Data”

Lecture 10:

Massively Parallel Algorithms
Slides at http://grigory.us/big-data-class.html

Grigory Yaroslavtsev
http://grigory.us 7N

http://grigory.us/
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html

Computational Model

* Input: sizen

e M machines, space Soneach(S=n'"°¢,0<e<1)
— Constant overhead in total space: M-S = 0(n)

* Output: solution to a problem (often size O(n))

— Doesn’t fit on a single machine (§ K n)

Input: size n = % = Output: size 0(n)

<l
e

S space

} M machines

Computational Model

* Computation/Communication in R rounds:

— Every machine performs a near-linear time
computation => Total running time 0 (n'"°(WR)

— Every machine sends/receives at most S bits of
information => Total communication O (nR).

Goal: Minimize R. Ideally: R = constant.

-
e

0(S1t°M) time

ce

MapReduce-style computations

YaHoO! Godgle

What | won’t discuss today

* PRAMs (shared memory, multiple processors) (see
e.g. [Karloff, Suri, Vassilvitskii‘10])
— Computing XOR requires Q(logn) rounds in CRCW PRAM
— Can be done in O(logg n) rounds of MapReduce

* Pregel-style systems, Distributed Hash Tables (see
e.g. Ashish Goel’s class notes and papers)

* Lower-level implementation details (see e.g. ===
Rajaraman-Leskovec-Ullman book) @

Models of parallel computation

e Bulk-Synchronous Parallel Model (BSP) [Valiant,90]

Pro: Most general, generalizes all other models
Con: Many parameters, hard to design algorithms
* Massive Parallel Computation [Feldman-Muthukrishnan-

Sidiropoulos-Stein-Svitkina’07, Karloff-Suri-Vassilvitskii’10,
Goodrich-Sitchinava-Zhang’1l, ..., Beame, Koutris, Suciu’13]

Pros:

* Inspired by modern systems (Hadoop, MapReduce, Dryad, ...)
 Few parameters, simple to design algorithms

* New algorithmic ideas, robust to the exact model specification

* # Rounds is an information-theoretic measure => can prove
unconditional lower bounds

* Between linear sketching and streaming with sorting

Sorting: Terasort

Sorting 11 keys on M = O(n!~%) machines

— Would like to partition keys uniformly into blocks: first
n/M, second n/M, etc.

— Sort the keys locally on each machine

Build an approximate histogram:

— Each machine takes a sample of size s

— AllM xs < S = n%* samples are sorted locally
— Blocks are computed based on the samples

By Chernoff bound M xs = 0 Cog n) samples suffice

. . €?
to compute al block sizes with +=en error

a—1 .
Take € = cerror 0(S); M xs = 0(n?729) =
0(M?) < O(n®) fora > 2/3

n

Algorithms for Graphs

* Dense graphs vs. sparse graphs
— Dense: S > |V]

* Linear sketching: one round

e “Filtering” (Output fits on a single machine) [Karloff,
Suri Vassilvitskii, SODA’10; Ene, Im, Moseley, KDD’'11;
Lattanzi, Moseley, Suri, Vassilvitskii, SPAA’11; Suri,
Vassilvitskii, WWW’11]

— Sparse: § < |V| (or § < solution size)

Sparse graph problems appear hard (Big open question:
connectivity in o(log n) rounds?)

C = ad

Algorithm for Connectivity

Version of Boruvka’s algorithm
Repeat O (logn) times:

— Each component chooses a neighboring
component

— All pairs of chosen components get merged
How to avoid chaining?

If the graph of components is bipartite and
only one side gets to choose then no chaining

Randomly assignh components to the sides

Algorithm for Connectivity: Setup

Data: N edges of an undirected graph.

Notation:
* Forv €V letm(v) beitsidin the data
* T'(S) = set of neighbors of a subset of vertices SCV.

Labels:
* Algorithms assigns a label £(v) to each v.

* Let L, € V be the set of vertices with the label £(v)
(invariant: subset of the connected component
containing v).

Active vertices:
e Some vertices will be called active.
* Every set L, will have exactly one active vertex.

Algorithm for Connectivity

Mark every vertex as active and let £(v) = m(v).
For phasesi = 1,2, ...,0(log N) do:

— Call each active vertex a leader with probability 1/2.
If v is a leader, mark all vertices in L,, as leaders.

— For every active non-leader vertex w, find the
smallest leader(with respect to i) vertex w* € I'(L,,).

— If w” is not empty, mark w passive and relabel each
vertex with label w by w™.

Output the set of CCs, where vertices having the

same label according to £ are in the same

component.

Algorithm for Connectivity: Analysis

 Iff(u) =¥ (v)thenu and v are in the same CC.
* Unique labels w.h.p after O(log N) phases.
 For every CC # active vertices reduces by a constant
factor in every phase.
— Half of the active vertices declared as non-leaders.
— Fix an active non-leader vertex v.
— If at least two different labels in the CC of v then there is
an edge (v',u) such that (v) = £(v") and (V") # £(u).
— u marked as a leader with probability 1/2; in expectation

half of the active non-leader vertices will change their
label.

— Overall, expect 1/4 of labels to disappear.

— By Chernoff after O(log N) phases # of active labels in
every connected component will drop to one w.h.p.

Algorithm for Connectivity:
Implementation Details

Distributed data structure of size O(|V|) to maintain
labels, ids, leader/non-leader status, etc.

— O(1) rounds per stage to update the data structure

Edges stored locally with all auxiliary info

— Between stages: use distributed data structure to update
local info on edges

For every active non-leader vertex w, find the
smallest leader (w.r.t) vertex w* € I'(L,,)

— Each (non-leader, leader) edges sends an update to the
distributed data structure

Much faster with Distributed Hash Table Service (DHT)
[Kiveris, Lattanzi, Mirrokni, Rastogi, Vassilvitskii’14]

Applications

* Using same reductions as in streaming:
— Bipartiteness
— k-connectivity
— Cut-sparsification

Approximating Geometric Problems
in Parallel Models

Geometric graph (implicit):
Euclidean distances between n points in R?

__ { ,,'f

e it ST B

(Traveling Salesman, Steiner Tree, etc.)
* Minimum Spanning Tree (clustering, vision)
 Minimum Cost Bichromatic Matching (vision)

Geometric Graph Problems

Combinatorial problems on graphs in R

Polynomial time (“easy”)

* Minimum Spanning Tree

* Earth-Mover Distance =

Min Weight Bi-chromatic Matching

d (“hard”)

* Steiner Tret
* Traveling Salesman gpCasy to implement in
* Clustering (Lane®®ns, facility Mgssively Parallel

Computc odels,
but bad running tinTe

SaeerOT, etc.)

MST: Single Linkage Clustering

e [Zahn’71] Clustering via MST (Single-linkage):
k clusters: remove k — 1 longest edges from MST

e Maximizes minimum intercluster distance

quality of this

partitioning is O
min{a,b,c} O

[Kleinberg, Tardos]

Earth-Mover Distance

 Computer vision: compare two pictures of
moving objects (stars, MRI scans)

Large geometric graphs

* Graph algorithms: Dense graphs vs. sparse graphs
— Dense: S > |V].
— Sparse: § < |V].

* Qur setting:
— Dense graphs, sparsely represented: O(n) space

— Output doesn’t fit on one machine (§ < n)

* Today: (1 + €)-approximate MST
— d = 2 (easy to generalize)
— R =loggn = 0O(1) rounds (§ = n®D)

O(logn)-MSTin R = O(logn) rounds

* Assume points have integer coordinates [0, ..., A], where
A =0(n?).

Impose an O (logn)- depth quadtree
Bottom-up: ForzeaeF

— compute ofFtiFiL
— Use only onedigs mieach on the next level

. Wrong representative:
\(.\/ O(1)-approximation per level

B

€L-nets
eL-net for a cell C with side length L:

Collection S of vertices in C, every vertex is at distance <= elL from some
vertex in S. (Fact: Can efficiently compute e-net of size O (6—2)

Bottom-up: For each cell in the quadtree

— Compute optimum MSTs in subcells
— Use €L-net from each cell on the next level

Idea: Pay only O(€L) for an edge cut by cell with side L

Randomly shift the quadtree:
Pricut edge of length ¥Wbonk [{presehtatblvarge errors

O(1)-appryximation per level

A N

L L L

Randomly shifted quadtree

* Top cell shifted by a random vector in [0, L]?
Impose a randomly shifted quadtree (top cell length 2A)

Bottom-up: For each cell in the quadtree
— Compute optimum MSTs in subcells
— Use €L-net from each cell on the next level

o (I Pay 5 jnstead of 4

2

Ll] Pr[BaEaéfl L 01)
—

(14 €)-MSTinR = 0(log n) rounds

 |dea: Only use short edges inside the cells

Impose a randomly shifted quadtree (top cell length ZE—A)

Bottom-up: For each node (cell) in the quadtree

— compute optimum Minimum Spanning Forests in subcells,
using edges of length < €L

— Use only €?L-net from each cell on the next level

A

L=0()

AT
I Pr[Bad Cut] = O(e€)

(1+€)-MSTinR = 0(1) rounds

* O(logn) rounds => O(logg n) = O(1) rounds
— Flatten the tree: (VM x v/M)-grids instead of (2x2) grids at

each level.
}m — 0

=

Impose a randomly shifted (VM X VM)-tree
Bottom-up: For each node (cell) in the tree
— compute optimum MSTs in subcells via edges of length < €L

— Use only €% L-net from each cell on the next level

(1+ €)-MSTinR = 0(1) rounds

Theorem: Let | = # levels in a random tree P
Ep[ALG] < (1 + O(eld))OPT

Proof (sketch):

* Ap(u,v) = cell length, which first partitions (u, v)

* New weights:

||u —UH2 <

e QOur algorith

“Solve-And-Sketch” Framework

(1 + €)-MST:

— “Load balancing”: partition the tree into parts of
the same size

— Almost linear time locally: Approximate Nearest
Neighbor data structure [Indyk’99]

— Dependence on dimension d (size of e-net is

N
0(2))
— Generalizes to bounded doubling dimension
— Implementation in MapReduce

“Solve-And-Sketch” Framework

(1 + €)-Earth-Mover Distance, Transportation Cost

* No simple “divide-and-conquer” Arora-Mitchell-style
algorithm (unlike for general matching)

* Only recently sequential (1 + €)-apprxoimation in
OG(nlogO(l) n)time [Sharathkumar, Agarwal ‘12]

Our approach (convex sketching):
 Switch to the flow-based version

* |In every cell, send the flow to the closest net-point
until we can connect the net points

“Solve-And-Sketch” Framework

Convex sketching the cost function for T net
points

e F:R* ! - R = the cost of routing fixed
amounts of flow through the net points

* Function F' = F + “normalization” is
monotone, convex and Lipschitz, (1 + €)-
approximates F

 We can (1 + €)-sketch it using a lower convex
hull

Thank you! http://grigory.us

Open problems:

* Exetension to high dimensions?

— Probably no, reduce from connectivity => conditional
lower bound : Q(logn) rounds for MST in £%

— The difficult setting is d = ©®(logn) (can do JL)
e Streaming alg for EMD and Transporation Cost?

e Qur work:

— First near-linear time algorithm for Transportation
Cost

— Is it possible to reconstruct the solution itself?

http://grigory.us/

Class Project

e Survey of 3-5 research papers

— Closely related to the topics of the class
* Streaming
* MapReduce
* Convex Optmization
e Sublinear Time Algorithms

— Office hours if you need suggestions
— Individual or groups of 2 people
— Deadline: December 18, 2015 at 23:59 EST
e Submission by e-mail grigory@grigory.us
— Submission Email Title: Project + Space + “Your Name”
— One submission per group listing participants

— Submission format
* PDF from LaTeX (best)
* PDF

mailto:grigory@grigory.us

Example: Gradient Descent in
TensorFlow

Gradient Descent (covered in class)

Adagrad:
http://www.magicbroom.info/Papers/DuchiHaSi10.pdf

Momentum (stochastic gradient descent + tweaks):
http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf

Adam (Adaptive + momentum):
http://arxiv.org/pdf/1412.6980.pdf

FTRL:

http://imlr.org/proceedings/papers/vl15/mcmahanllb/mc
mahanllb.pdf

RMSProp:
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture

slides lec6.pdf

http://www.magicbroom.info/Papers/DuchiHaSi10.pdf
http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf
http://arxiv.org/pdf/1412.6980.pdf
http://jmlr.org/proceedings/papers/v15/mcmahan11b/mcmahan11b.pdf
http://jmlr.org/proceedings/papers/v15/mcmahan11b/mcmahan11b.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

K-means Clustering

* GivenX = {x4, ..., x,,} € R® find a set of centers
C = (cq) e, Cy) that minimizes

Z mln‘lx — cll‘

XEX
* NP-hard problem

* Popular heuristic local search (Lloyd’s alg.)
* For a fixed partitioning P4, ..., Py:

Dimension reduction for K-means
* Let costp(X) = inf, costp .(X)
* ForO0<e <% et f: X = R" be such that

vi,j: (1-€)||x — ‘2 < |lf G = £(x) ”2 <@+ |x _xJHE

» P is ay-approx. clustering for f(X)
 P"is an optimal clustering for X

° Lemma.
1+ €

1—¢€

costp <y () costp+(X)

Dimension reduction for K-means

Let costp(X) = inf; costp .(X)

For0 < e <%Ietf:X — R? be such that
= xl[) < |lF@) -)| < @+e
P is a y-approx. clustering for f(X)

P* is an optimal clustering for X
Lemma.

2
|xi—xj”2

Vi,j: (1 —¢€)

1+¢€
1—¢€

d =0 (loge%) suffices by the JL-lemma

costp <y () costp+(X)

Dimension reduction for K-means

Fix a partition P = (P4, ..., P},)

costp(X) = Z Z
JE[K]

LEP; J i'EP; ,
1 2 / ! i
= Z mz Z ||xl||2 —2<xi, Z xl>+ X
jelk] "I liep; \ i'ep; i'€P; i'eP;
2
1 [lil] + [1x/1]
= 2 2 e
JE[K] jieri’er
1 2
). 2P, 2, 2, (b=l
jE[K] i€Pji'eP;

(1 —€e)costp(X) < costp(f(X)) < (1 + €)costp(X)
(1 —€)costp(X) < cost,s(f(X)) <y costp*(f(X)) <7y costp+(X)

K-means++ Algorithm

First center uniformly at random from X
For a set of centers C let:

2
d?(x,C) = min ||x — ¢
(x,C) CEC“ ||2

Fix current set of centers C

Subsequent centers: each x; with prob.
d*(x;, C)

ijEX dz(xj' C)
Gives O (log k)-approx. to OPT in expectation

K-means|| Algorithm

-irst center C: sample a point uniformly
nitial cost P = ¥, d*(x, C)
-or O(log) times do:

— Repeat £ times (in parallel)
* C' =sample each x; € X indep. with prob.

o d*(x, 0)
P ijEX dz(xj: C)
e CeCUC
Forx € C:
w, = the #points belonging to this center
Cluster the weighted points in C into k clusters

K-means|| Algorithm

Oversampling factor £ = O(k)
#pointsin C: £ logy

Thm. If a-approx. used in the last step then k-
means|| obtains an O(a)-approx. to k-means

If ¥ and W' are the costs of clustering before
and after one outer loop iteration then:

k
E|W'] = 0(0PT) + JLP

K-means|| Analysis

For a set of points A = {a4, ..., a;} centroid Cy:

a
Ca = |T|Z t

Order a4, ..., ar in the increasing order by distance from ¢,
Fix a cluster A in OPT
Fix C prior to the iteration and let:

#(0) =) d*(x,0)

b4 (C) = Z d%(a, C)

d?(at,C)

$(C)
Probability that a; is the smallest one chosen:

t—1
dt = Pt 1_[(1 — Pj)
j=1

Let p; = be the probability of selecting a;

K-means|| Analysis

e Can either assign all points to some selected
a; or keep the original clustering:

S; = min (gbA,ZHa — at||2)

acA

* E[pa(CUC)] < Xt qrSt + qre1 9a(C)
where gr.,1= prob. that no pointin A is selected

* Simplifying assumption: consider the case
when all p; = p (mean field analysis)

e g, = p(1 — p)? (decreasing sequence)

K-means|| Analysis

© S = ZaEAlla — at||2

« {s{}isanincreasing sequence

Z qeSt < Z qeSt
{5039
PXER
(S

* E[¢p,(CUC)H] < (1 —qr+1) 2 Pa+ qreq1 Pa(C)

