CIS 700: "algorithms for Big Data" Lecture 10: Massively Parallel Algorithms

Slides at http://grigory.us/big-data-class.htm|

Grigory Yaroslavtsev
 http://grigory.us

Computational Model

- Input: size n
- \boldsymbol{M} machines, space \boldsymbol{S} on each ($\boldsymbol{S}=\boldsymbol{n}^{1-\epsilon}, 0<\epsilon<1$)
- Constant overhead in total space: $\boldsymbol{M} \cdot \boldsymbol{S}=O(n)$
- Output: solution to a problem (often size $O(n)$)
- Doesn't fit on a single machine ($S \ll n$)

Input: size $n \Rightarrow$
\Rightarrow Output: size $O(n)$

S space

Computational Model

- Computation/Communication in R rounds:
- Every machine performs a near-linear time computation $=>$ Total running time $O\left(n^{1+o(1)} R\right)$
- Every machine sends/receives at most S bits of information $=>$ Total communication $O(n R)$.

Goal: Minimize R. Ideally: $R=$ constant.
\mathbf{S} space
$O\left(S^{1+o(1)}\right)$ time

MapReduce-style computations

YАНоО! Google

What I won't discuss today

- PRAMs (shared memory, multiple processors) (see e.g. [Karloff, Suri, Vassilvitskii'10])
- Computing XOR requires $\widetilde{\Omega}(\log n)$ rounds in CRCW PRAM
- Can be done in $O\left(\log _{s} n\right)$ rounds of MapReduce
- Pregel-style systems, Distributed Hash Tables (see e.g. Ashish Goel's class notes and papers)
- Lower-level implementation details (see e.g. Rajaraman-Leskovec-Ullman book)

Models of parallel computation

- Bulk-Synchronous Parallel Model (BSP) [Valiant,90]

Pro: Most general, generalizes all other models
Con: Many parameters, hard to design algorithms

- Massive Parallel Computation [Feldman-Muthukrishnan-Sidiropoulos-Stein-Svitkina’07, Karloff-Suri-Vassilvitskii'10, Goodrich-Sitchinava-Zhang'11, ..., Beame, Koutris, Suciu'13]
Pros:
- Inspired by modern systems (Hadoop, MapReduce, Dryad, ...)
- Few parameters, simple to design algorithms
- New algorithmic ideas, robust to the exact model specification
- \# Rounds is an information-theoretic measure => can prove unconditional lower bounds
- Between linear sketching and streaming with sorting

Sorting: Terasort

- Sorting \boldsymbol{n} keys on $\boldsymbol{M}=\boldsymbol{O}\left(\boldsymbol{n}^{1-\boldsymbol{\alpha}}\right)$ machines
- Would like to partition keys uniformly into blocks: first $\boldsymbol{n} / \boldsymbol{M}$, second $\boldsymbol{n} / \boldsymbol{M}$, etc.
- Sort the keys locally on each machine
- Build an approximate histogram:
- Each machine takes a sample of size \boldsymbol{s}
- All $\boldsymbol{M} * \boldsymbol{s} \leq \boldsymbol{S}=\boldsymbol{n}^{\boldsymbol{\alpha}}$ samples are sorted locally
- Blocks are computed based on the samples
- By Chernoff bound $\mathbf{M} * \boldsymbol{s}=O\left(\frac{\log \boldsymbol{n}}{\epsilon^{2}}\right)$ samples suffice to compute al block sizes with $\pm \boldsymbol{\epsilon} \boldsymbol{\epsilon}$ error
- Take $\epsilon=\frac{n^{\alpha-1}}{2}$: $\operatorname{error} \mathrm{O}(\boldsymbol{S}) ; \mathbf{M} * \boldsymbol{s}=\widetilde{O}\left(\boldsymbol{n}^{2-2 \alpha}\right)=$ $\boldsymbol{O}\left(\boldsymbol{M}^{2}\right) \leq \boldsymbol{O}\left(\boldsymbol{n}^{\alpha}\right)$ for $\alpha \geq 2 / 3$

Algorithms for Graphs

- Dense graphs vs. sparse graphs
- Dense: $S \gg|V|$
- Linear sketching: one round
- "Filtering" (Output fits on a single machine) [Karloff, Suri Vassilvitskii, SODÁ10; Ene, Im, Moseley, KDD'11; Lattanzi, Moseley, Suri, Vassilvitskii, SPAA'11; Suri, Vassilvitskii, WWW'11]
- Sparse: $\boldsymbol{S} \ll|V|$ (or $\boldsymbol{S} \ll$ solution size)

Sparse graph problems appear hard (Big open question: connectivity in o $(\log n)$ rounds?)

vs.

Algorithm for Connectivity

- Version of Boruvka's algorithm
- Repeat $O(\log n)$ times:
- Each component chooses a neighboring component
- All pairs of chosen components get merged
- How to avoid chaining?
- If the graph of components is bipartite and only one side gets to choose then no chaining
- Randomly assign components to the sides

Algorithm for Connectivity: Setup

Data: \mathbf{N} edges of an undirected graph.

Notation:

- For $v \in V$ let $\pi(v)$ be its id in the data
- $\Gamma(S) \equiv$ set of neighbors of a subset of vertices $S \subseteq \mathrm{~V}$.

Labels:

- Algorithms assigns a label $\ell(v)$ to each v.
- Let $L_{v} \subseteq V$ be the set of vertices with the label $\ell(v)$ (invariant: subset of the connected component containing v).

Active vertices:

- Some vertices will be called active.
- Every set L_{v} will have exactly one active vertex.

Algorithm for Connectivity

- Mark every vertex as active and let $\ell(v)=\pi(v)$.
- For phases $i=1,2, \ldots, O(\log N)$ do:
- Call each active vertex a leader with probability $1 / 2$. If v is a leader, mark all vertices in L_{v} as leaders.
- For every active non-leader vertex w, find the smallest leader(with respect to π) vertex $\mathrm{w}^{\star} \in \Gamma\left(L_{w}\right)$.
- If w^{\star} is not empty, mark w passive and relabel each vertex with label w by w^{\star}.
- Output the set of CCs, where vertices having the same label according to ℓ are in the same component.

Algorithm for Connectivity: Analysis

- If $\ell(u)=\ell(v)$ then u and v are in the same CC.
- Unique labels w.h.p after $O(\log N)$ phases.
- For every CC \# active vertices reduces by a constant factor in every phase.
- Half of the active vertices declared as non-leaders.
- Fix an active non-leader vertex v.
- If at least two different labels in the CC of v then there is an edge $\left(v^{\prime}, u\right)$ such that $\ell(v)=\ell\left(v^{\prime}\right)$ and $\ell\left(v^{\prime}\right) \neq \ell(u)$.
$-u$ marked as a leader with probability $1 / 2$; in expectation half of the active non-leader vertices will change their label.
- Overall, expect 1/4 of labels to disappear.
- By Chernoff after $O(\log N)$ phases \# of active labels in every connected component will drop to one w.h.p.

Algorithm for Connectivity: Implementation Details

- Distributed data structure of size $O(|V|)$ to maintain labels, ids, leader/non-leader status, etc.
- O(1) rounds per stage to update the data structure
- Edges stored locally with all auxiliary info
- Between stages: use distributed data structure to update local info on edges
- For every active non-leader vertex w, find the smallest leader (w.r.t π) vertex $\mathrm{w}^{\star} \in \Gamma\left(L_{w}\right)$
- Each (non-leader, leader) edges sends an update to the distributed data structure
- Much faster with Distributed Hash Table Service (DHT) [Kiveris, Lattanzi, Mirrokni, Rastogi, Vassilvitskii'14]

Applications

- Using same reductions as in streaming:
- Bipartiteness
- k-connectivity
- Cut-sparsification

Approximating Geometric Problems in Parallel Models

Geometric graph (implicit):
Euclidean distances between n points in \mathbb{R}^{d}

Already have solutions for old NP-hard problems
(Traveling Salesman, Steiner Tree, etc.)

- Minimum Spanning Tree (clustering, vision)
- Minimum Cost Bichromatic Matching (vision)

Geometric Graph Problems

Combinatorial problems on graphs in \mathbb{R}^{d}
Polynomial time ("easy")

- Minimum Spanning Tree
- Earth-Mover Distance =

Min Weight Bi-chromatic Matching

Nrinard ("hard")

- Steiner Tree
- Traveling Salesman
- Clustering (k-manrans, facility dacrưn, etc.)
 arassively Parallel
Computational Models, but bad running time

MST: Single Linkage Clustering

- [Zahn'71] Clustering via MST (Single-linkage):
k clusters: remove $\boldsymbol{k}-1$ longest edges from MST
- Maximizes minimum intercluster distance

[Kleinberg, Tardos]

Earth-Mover Distance

- Computer vision: compare two pictures of moving objects (stars, MRI scans)

Large geometric graphs

- Graph algorithms: Dense graphs vs. sparse graphs
- Dense: $S \gg|V|$.
- Sparse: $\boldsymbol{S} \ll|V|$.
- Our setting:
- Dense graphs, sparsely represented: $0(n)$ space
- Output doesn't fit on one machine ($S \ll n$)
- Today: $(1+\epsilon)$-approximate MST
$-d=2$ (easy to generalize)
- $R=\log _{s} n=\mathrm{O}(1)$ rounds $\left(S=n^{\boldsymbol{\Omega}(\mathbf{1})}\right)$

$O(\log n)-\mathrm{MST}$ in $R=O(\log n)$ rounds

- Assume points have integer coordinates $[0, \ldots, \Delta]$, where $\Delta=O\left(n^{2}\right)$.

Impose an $O(\log n)$-depth quadtree Bottom-up: Foreach cellin thequadtreem

- compute optimum MSTs in subeclls
- Use only one feresintative frompeach cell on the next level

ϵL-nets

- ϵL-net for a cell C with side length L :

Collection \mathbf{S} of vertices in C , every vertex is at distance <= ϵL from some vertex in \mathbf{S}. (Fact: Can efficiently compute ϵ-net of size $O\left(\frac{1}{\epsilon^{2}}\right)$)

Bottom-up: For each cell in the quadtree

- Compute optimum MSTs in subcells
- Use ϵL-net from each cell on the next level
- Idea: Pay only $O(\epsilon L)$ for an edge cut by cell with side L
- Randomly shift the quadtree:
 O(1)-apprqximation per level

Randomly shifted quadtree

- Top cell shifted by a random vector in $[0, L]^{2}$

Impose a randomly shifted quadtree (top cell length $\mathbf{2 \Delta}$)
Bottom-up: For each cell in the quadtree

- Compute optimum MSTs in subcells
- Use ϵL-net from each cell on the next level

Pay 5 instead of 4
 $\operatorname{Pr}[$ Baadeut $]=\Omega(1)$

$(1+\boldsymbol{\epsilon})-\mathrm{MST}$ in $\mathbf{R}=O(\log n)$ rounds

- Idea: Only use short edges inside the cells

Impose a randomly shifted quadtree (top cell length $\frac{2 \Delta}{\epsilon}$)
Bottom-up: For each node (cell) in the quadtree

- compute optimum Minimum Spanning Forests in subcells, using edges of length $\leq \epsilon L$
- Use only $\epsilon^{2} L$-net from each cell on the next level

$$
L=\Omega\left(\frac{1}{\epsilon}\right)
$$

$$
\operatorname{Pr}[\text { Bad Cut }]=\boldsymbol{O}(\epsilon)
$$

$(1+\boldsymbol{\epsilon})-\mathrm{MST}$ in $\mathbf{R}=O$ (1) rounds

- $O(\log n)$ rounds $=>O\left(\log _{s} n\right)=O(1)$ rounds
- Flatten the tree: $(\sqrt{M} \times \sqrt{M})$-grids instead of (2×2) grids at each level.

$$
\sqrt{M}=n^{\Omega(1)}
$$

Impose a randomly shifted $(\sqrt{M} \times \sqrt{\boldsymbol{M}})$-tree
Bottom-up: For each node (cell) in the tree

- compute optimum MSTs in subcells via edges of length $\leq \epsilon L$
- Use only $\epsilon^{2} L$-net from each cell on the next level

$(1+\boldsymbol{\epsilon})-\mathrm{MST}$ in $\mathbf{R}=O$ (1) rounds

Theorem: Let $l=$ \# levels in a random tree \boldsymbol{P}

$$
\mathbb{E}_{P}[\mathbf{A L G}] \leq(1+O(\epsilon \operatorname{ld})) \mathbf{O P T}
$$

Proof (sketch):

- $\Delta_{P}(u, v)=$ cell length, which first partitions (u, v)
- New weights: $w_{P}(u, v)=\|u-v\|_{2} \dagger \epsilon \Delta_{P}(u, v)$
$\|u-v\|_{2} \leq E_{P}\left[w_{P}(u, v)\right] \leq(1+O(\epsilon \in \| v)) p((u, v)\rangle \|_{2}$
- Our algorithmimpiements Kiruskal for weights $\boldsymbol{w}_{\boldsymbol{P}}$

"Solve-And-Sketch" Framework

$(1+\epsilon)-\mathrm{MST}$:

- "Load balancing": partition the tree into parts of the same size
- Almost linear time locally: Approximate Nearest Neighbor data structure [Indyk'99]
- Dependence on dimension d (size of ϵ-net is $\left.O\left(\frac{d}{\epsilon}\right)^{d}\right)$
- Generalizes to bounded doubling dimension
- Implementation in MapReduce

"Solve-And-Sketch" Framework

$(1+\epsilon)$-Earth-Mover Distance, Transportation Cost

- No simple "divide-and-conquer" Arora-Mitchell-style algorithm (unlike for general matching)
- Only recently sequential $(1+\epsilon)$-apprxoimation in $O_{\epsilon}\left(n \log ^{O(1)} n\right)$ time [Sharathkumar, Agarwal '12]
Our approach (convex sketching):
- Switch to the flow-based version
- In every cell, send the flow to the closest net-point until we can connect the net points

"Solve-And-Sketch" Framework

Convex sketching the cost function for τ net points

- $F: \mathbb{R}^{\tau-1} \rightarrow \mathbb{R}=$ the cost of routing fixed amounts of flow through the net points
- Function $F^{\prime}=F+$ "normalization" is monotone, convex and Lipschitz, $(1+\epsilon)$ approximates F
- We can $(1+\epsilon)$-sketch it using a lower convex hull

Thank you! http://grigory.us

Open problems:

- Exetension to high dimensions?
- Probably no, reduce from connectivity => conditional lower bound : $\Omega(\log n)$ rounds for MST in ℓ_{∞}^{n}
- The difficult setting is $d=\Theta(\log n)$ (can do JL)
- Streaming alg for EMD and Transporation Cost?
- Our work:
- First near-linear time algorithm for Transportation Cost
- Is it possible to reconstruct the solution itself?

Class Project

- Survey of 3-5 research papers
- Closely related to the topics of the class
- Streaming
- MapReduce
- Convex Optmization
- Sublinear Time Algorithms
- Office hours if you need suggestions
- Individual or groups of 2 people
- Deadline: December 18, 2015 at 23:59 EST
- Submission by e-mail grigory@grigory.us
- Submission Email Title: Project + Space + "Your Name"
- One submission per group listing participants
- Submission format
- PDF from LaTeX (best)
- PDF

Example: Gradient Descent in

TensorFlow

- Gradient Descent (covered in class)
- Adagrad: http://www.magicbroom.info/Papers/DuchiHaSi10.pdf
- Momentum (stochastic gradient descent + tweaks): http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf
- Adam (Adaptive + momentum): http://arxiv.org/pdf/1412.6980.pdf
- FTRL:
http://jmlr.org/proceedings/papers/v15/mcmahan11b/mc mahan11b.pdf
- RMSProp: http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture slides lec6.pdf

K-means Clustering

- Given $\mathrm{X}=\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbb{R}^{d}$ find a set of centers $C=\left(c_{1}, \ldots, c_{k}\right)$ that minimizes

$$
\sum_{x \in X} \min _{i \in[k]}| | x-c_{i}| |^{2}
$$

- NP-hard problem
- Popular heuristic local search (Lloyd's alg.)
- For a fixed partitioning P_{1}, \ldots, P_{k} :

$$
c_{j}=\frac{1}{\left|P_{j}\right|} \cdot \sum_{i \in P_{j}} x_{i}
$$

Dimension reduction for K-means

- Let $\operatorname{cost}_{P}(X)=\inf _{c} \operatorname{cost}_{P, c}(X)$
- For $0<\epsilon<\frac{1}{2}$ let $f: X \rightarrow \mathbb{R}^{n}$ be such that
$\forall i, j:(1-\epsilon)| | x_{i}-x_{j}\left\|_{2}^{2} \leq\right\| f\left(x_{i}\right)-f\left(x_{j}\right)\left\|_{2}^{2} \leq(1+\epsilon)| | x_{i}-x_{j}\right\|_{2}^{2}$
- \hat{P} is a γ-approx. clustering for $f(X)$
- P^{*} is an optimal clustering for X
- Lemma.

$$
\operatorname{cost}_{\hat{P}} \leq \gamma\left(\frac{1+\epsilon}{1-\epsilon}\right) \operatorname{cost}_{P^{*}}(X)
$$

Dimension reduction for K-means

- Let $\operatorname{cost}_{P}(X)=\inf _{C} \operatorname{cost}_{P, c}(X)$
- For $0<\epsilon<\frac{1}{2}$ let $f: X \rightarrow \mathbb{R}^{d^{\prime}}$ be such that $\forall i, j:(1-\epsilon)| | x_{i}-x_{j}| |_{2}^{2} \leq\left|\left|f\left(x_{i}\right)-f\left(x_{j}\right) \|_{2}^{2} \leq(1+\epsilon)\right|\right| x_{i}-x_{j}| |_{2}^{2}$
- \hat{P} is a γ-approx. clustering for $f(X)$
- P^{*} is an optimal clustering for X
- Lemma.

$$
\cos _{\hat{P}} \leq \gamma\left(\frac{1+\epsilon}{1-\epsilon}\right) \operatorname{cost}_{P^{*}}(X)
$$

- $d^{\prime}=O\left(\log \frac{n}{\epsilon^{2}}\right)$ suffices by the JL-lemma

Dimension reduction for K-means

- Fix a partition $P=\left(P_{1}, \ldots, P_{k}\right)$

$$
\begin{aligned}
& \operatorname{cost}_{P}(X)=\sum_{j \in[k]} \sum_{i \in P_{j}}| | x_{i}-\frac{1}{\left|P_{j}\right|} \sum_{i^{\prime} \in P_{j}} x_{i^{\prime}}| |_{2}^{2} \\
& =\sum_{j \in[k]} \frac{1}{\left|P_{j}\right|} \sum_{i \in P_{j}}\left(\sum_{i^{\prime} \in P_{j}}| | x_{i}| |_{2}^{2}-2\left\langle x_{i}, \sum_{i^{\prime} \in \mathrm{P}_{j}} x_{i}^{\prime}\right\rangle+\|\left.\sum_{i^{\prime} \in \mathrm{P}_{j}} x_{i}^{\prime}\right|_{2} ^{2}\right) \\
& =\sum_{j \in[k]} \frac{1}{\left|P_{j}\right|} \sum_{i \in P_{j}} \sum_{i^{\prime} \in P_{j}}\left(\frac{| | x_{i}| |_{2}^{2}+\left|\left|x_{i}^{\prime}\right|\right|_{2}^{2}}{2}-\left\langle x_{i}, x_{i^{\prime}}\right\rangle\right) \\
& \sum_{j \in[k]} \frac{1}{2\left|P_{j}\right|} \sum_{i \in P_{j}} \sum_{i^{\prime} \in P_{j}}\left(| | x_{i}-x_{i^{\prime}}| |_{2}^{2}\right) \\
& \text { - }(1-\epsilon) \operatorname{cost}_{P}(X) \leq \operatorname{cost}_{P}(f(X)) \leq(1+\epsilon) \operatorname{cost}_{P}(X) \\
& \text { - }(1-\epsilon) \operatorname{cost}_{\hat{p}}(X) \leq \operatorname{cost}_{\hat{p}}(f(X)) \leq \gamma \operatorname{cost}_{P^{*}}(f(X)) \leq \gamma \operatorname{cost}_{P^{*}}(X)
\end{aligned}
$$

K-means++ Algorithm

- First center uniformly at random from X
- For a set of centers C let:

$$
d^{2}(x, C)=\min _{c \in C}| | x-c| |_{2}^{2}
$$

- Fix current set of centers C
- Subsequent centers: each x_{i} with prob.

$$
\frac{d^{2}\left(x_{i}, C\right)}{\sum_{x_{j} \in X} d^{2}\left(x_{j}, C\right)}
$$

- Gives $O(\log k)$-approx. to OPT in expectation

K-means|| Algorithm

- First center C : sample a point uniformly
- Initial cost $\psi=\sum_{x} d^{2}(x, C)$
- For $O(\log \psi)$ times do:
- Repeat ℓ times (in parallel)
- $C^{\prime}=$ sample each $x_{i} \in X$ indep. with prob.

$$
p_{x}=\frac{d^{2}\left(x_{i}, C\right)}{\sum_{x_{j} \in X} d^{2}\left(x_{j}, C\right)}
$$

- $C \leftarrow C \cup C^{\prime}$
- For $x \in C$:
$w_{x}=$ the \#points belonging to this center
- Cluster the weighted points in C into k clusters

K-means|| Algorithm

- Oversampling factor $\ell=\Theta(k)$
- \#points in $C: \ell \log \psi$
- Thm. If α-approx. used in the last step then k means\| obtains an $O(\alpha)$-approx. to k-means
- If Ψ and Ψ^{\prime} are the costs of clustering before and after one outer loop iteration then:

$$
E\left[\Psi^{\prime}\right]=O(O P T)+\frac{k}{e \ell} \Psi
$$

K-means|| Analysis

- For a set of points $A=\left\{a_{1}, \ldots, a_{t}\right\}$ centroid c_{A} :

$$
c_{A}=\frac{1}{|T|} \sum a_{t}
$$

- Order a_{1}, \ldots, a_{T} in the increasing order by distance from c_{A}
- Fix a cluster A in OPT
- Fix C prior to the iteration and let:

$$
\begin{aligned}
\phi(C) & =\sum_{x} d^{2}(x, C) \\
\phi_{A}(C) & =\sum_{a} d^{2}(a, C)
\end{aligned}
$$

- Let $p_{t}=\frac{d^{2}\left(a_{t}, C\right)}{\phi(C)}$ be the probability of selecting a_{t}
- Probability that a_{t} is the smallest one chosen:

$$
q_{t}=p_{t} \prod_{j=1}^{t-1}\left(1-p_{j}\right)
$$

K-means|| Analysis

- Can either assign all points to some selected a_{t} or keep the original clustering:

$$
s_{t}=\min \left(\phi_{A}, \sum_{a \in A}\left\|a-a_{t}\right\|^{2}\right)
$$

- $E\left[\phi_{A}\left(C \cup C^{\prime}\right)\right] \leq \sum_{t} q_{t} s_{t}+q_{T+1} \phi_{A}(C)$
where $q_{T+1}=$ prob. that no point in A is selected
- Simplifying assumption: consider the case when all $p_{t}=p$ (mean field analysis)
- $q_{t}=p(1-p)^{t}$ (decreasing sequence)

K-means|| Analysis

- $s_{t}^{\prime}=\sum_{a \in A}\left\|a-a_{t}\right\|^{2}$
- $\left\{s_{t}^{\prime}\right\}$ is an increasing sequence

$$
\begin{aligned}
& \sum_{t} q_{t} s_{t} \leq \sum_{t} q_{t} s_{t}^{\prime} \\
\leq & \frac{1}{T}\left(\sum_{t} q_{t} \sum_{t} s_{t}^{\prime}\right) \\
= & \left(\sum_{t} q_{t} \cdot \frac{1}{T} \sum_{t} s_{t}^{\prime}\right) \\
= & \left(\sum_{t} q_{t} \cdot 2 \phi_{A}^{*}\right)
\end{aligned}
$$

- $E\left[\phi_{A}\left(C \cup C^{\prime}\right)\right] \leq\left(1-q_{T+1}\right) 2 \phi_{A}^{*}+q_{T+1} \phi_{A}(C)$

