
CIS 700:
“algorithms for Big Data”

Grigory Yaroslavtsev
http://grigory.us

Lecture 10:
Massively Parallel Algorithms

Slides at http://grigory.us/big-data-class.html

http://grigory.us/
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html

Computational Model
• Input: size n

• 𝑴 machines, space 𝑺 on each (𝑺 = 𝒏1−𝜖 , 0 < 𝜖 < 1)

– Constant overhead in total space: 𝑴 ⋅ 𝑺 = 𝑂(𝒏)

• Output: solution to a problem (often size O(𝒏))

– Doesn’t fit on a single machine (𝑺 ≪ 𝒏)

+ 𝑴 machines +
S space

𝐈𝐧𝐩𝐮𝐭: size 𝒏 ⇒ ⇒ 𝐎𝐮𝐭𝐩𝐮𝐭: 𝑠𝑖𝑧𝑒 𝑂(𝒏)

+ 𝑴 machines +
S space

Computational Model
• Computation/Communication in 𝑹 rounds:

– Every machine performs a near-linear time
computation => Total running time 𝑂(𝒏𝟏+𝒐(𝟏)𝑹)

– Every machine sends/receives at most 𝑺 bits of
information => Total communication 𝑂(𝒏𝑹).

Goal: Minimize 𝑹. Ideally: 𝑹 = constant.

𝑶(𝑺𝟏+𝒐(𝟏)) time

≤ 𝑺 bits

MapReduce-style computations

What I won’t discuss today
• PRAMs (shared memory, multiple processors) (see

e.g. [Karloff, Suri, Vassilvitskii‘10])
– Computing XOR requires Ω (log 𝑛) rounds in CRCW PRAM
– Can be done in 𝑂(log𝒔 𝑛) rounds of MapReduce

• Pregel-style systems, Distributed Hash Tables (see
e.g. Ashish Goel’s class notes and papers)

• Lower-level implementation details (see e.g.
Rajaraman-Leskovec-Ullman book)

Models of parallel computation
• Bulk-Synchronous Parallel Model (BSP) [Valiant,90]

Pro: Most general, generalizes all other models

Con: Many parameters, hard to design algorithms

• Massive Parallel Computation [Feldman-Muthukrishnan-
Sidiropoulos-Stein-Svitkina’07, Karloff-Suri-Vassilvitskii’10,
Goodrich-Sitchinava-Zhang’11, ..., Beame, Koutris, Suciu’13]

Pros:

• Inspired by modern systems (Hadoop, MapReduce, Dryad, …)

• Few parameters, simple to design algorithms

• New algorithmic ideas, robust to the exact model specification

• # Rounds is an information-theoretic measure => can prove
unconditional lower bounds

• Between linear sketching and streaming with sorting

Sorting: Terasort

• Sorting 𝒏 keys on 𝑴 = 𝑶(𝒏𝟏−𝜶) machines
– Would like to partition keys uniformly into blocks: first
𝒏/𝑴, second 𝒏/𝑴, etc.

– Sort the keys locally on each machine

• Build an approximate histogram:
– Each machine takes a sample of size 𝒔
– All 𝑴 ∗ 𝒔 ≤ 𝑺 = 𝒏𝜶 samples are sorted locally
– Blocks are computed based on the samples

• By Chernoff bound 𝐌 ∗ 𝒔 = 𝑂
𝑙𝑜𝑔 𝒏

𝝐𝟐
 samples suffice

to compute al block sizes with ±𝜖𝒏 error

• Take 𝜖 =
𝒏𝛼−1

2
: error O 𝑺 ; 𝐌 ∗ 𝒔 = 𝑂(𝒏2−𝟐𝜶) =

𝑶(𝑴𝟐) ≤ 𝑶(𝒏𝜶) for 𝛼 ≥ 2/3

Algorithms for Graphs
• Dense graphs vs. sparse graphs

– Dense: 𝑺 ≫ |𝑉|

• Linear sketching: one round

• “Filtering” (Output fits on a single machine) [Karloff,
Suri Vassilvitskii, SODA’10; Ene, Im, Moseley, KDD’11;
Lattanzi, Moseley, Suri, Vassilvitskii, SPAA’11; Suri,
Vassilvitskii, WWW’11]

– Sparse: 𝑺 ≪ |𝑉| (or 𝑺 ≪ solution size)

Sparse graph problems appear hard (Big open question:
connectivity in o(log 𝑛) rounds?)

VS.

Algorithm for Connectivity

• Version of Boruvka’s algorithm

• Repeat 𝑂(log 𝑛) times:
– Each component chooses a neighboring

component

– All pairs of chosen components get merged

• How to avoid chaining?

• If the graph of components is bipartite and
only one side gets to choose then no chaining

• Randomly assign components to the sides

Algorithm for Connectivity: Setup
Data: N edges of an undirected graph.

Notation:
• For 𝑣 ∈ 𝑉 let 𝜋(𝑣) be its id in the data
• Γ(𝑆) ≡ set of neighbors of a subset of vertices S⊆V.

Labels:
• Algorithms assigns a label ℓ(𝑣) to each v.
• Let 𝐿𝑣 ⊆ 𝑉 be the set of vertices with the label ℓ(𝑣)

(invariant: subset of the connected component
containing 𝑣).

Active vertices:
• Some vertices will be called active.
• Every set 𝐿𝑣 will have exactly one active vertex.

Algorithm for Connectivity

• Mark every vertex as active and let ℓ(𝑣) = 𝜋(𝑣).

• For phases 𝑖 = 1,2, … , 𝑂(log 𝑁) do:
– Call each active vertex a leader with probability 1/2.

If v is a leader, mark all vertices in 𝐿𝑣 as leaders.

– For every active non-leader vertex w, find the
smallest leader(with respect to 𝜋) vertex w⋆ ∈ Γ(𝐿𝑤).

– If w⋆ is not empty, mark w passive and relabel each
vertex with label w by w⋆.

• Output the set of CCs, where vertices having the
same label according to ℓ are in the same
component.

Algorithm for Connectivity: Analysis
• If ℓ(𝑢) = ℓ(𝑣) then 𝑢 and 𝑣 are in the same CC.

• Unique labels w.h.p after 𝑂(log𝑁) phases.

• For every CC # active vertices reduces by a constant
factor in every phase.
– Half of the active vertices declared as non-leaders.

– Fix an active non-leader vertex 𝒗.

– If at least two different labels in the CC of v then there is
an edge (𝒗′, 𝒖) such that ℓ(𝒗) = ℓ(𝒗′) and ℓ(𝒗′) ≠ ℓ(𝒖).

– 𝒖 marked as a leader with probability 1/2; in expectation
half of the active non-leader vertices will change their
label.

– Overall, expect 1/4 of labels to disappear.

– By Chernoff after 𝑂(log𝑁) phases # of active labels in
every connected component will drop to one w.h.p.

Algorithm for Connectivity:
Implementation Details

• Distributed data structure of size 𝑂 𝑉 to maintain
labels, ids, leader/non-leader status, etc.
– O(1) rounds per stage to update the data structure

• Edges stored locally with all auxiliary info
– Between stages: use distributed data structure to update

local info on edges

• For every active non-leader vertex w, find the
smallest leader (w.r.t 𝜋) vertex w⋆ ∈ Γ(𝐿𝑤)
– Each (non-leader, leader) edges sends an update to the

distributed data structure

• Much faster with Distributed Hash Table Service (DHT)
[Kiveris, Lattanzi, Mirrokni, Rastogi, Vassilvitskii’14+

Applications

• Using same reductions as in streaming:

– Bipartiteness

– k-connectivity

– Cut-sparsification

Approximating Geometric Problems
in Parallel Models

Geometric graph (implicit):

Euclidean distances between n points in ℝ𝒅

Already have solutions for old NP-hard problems
(Traveling Salesman, Steiner Tree, etc.)

• Minimum Spanning Tree (clustering, vision)

• Minimum Cost Bichromatic Matching (vision)

Polynomial time (“easy”)

• Minimum Spanning Tree

• Earth-Mover Distance =

Min Weight Bi-chromatic Matching

NP-hard (“hard”)

• Steiner Tree

• Traveling Salesman

• Clustering (k-medians, facility
location, etc.)

Geometric Graph Problems

Combinatorial problems on graphs in ℝ𝒅

Arora-Mitchell-style
“Divide and Conquer”,
easy to implement in
Massively Parallel
Computational Models,
but bad running time

+

+ Need new theory!

MST: Single Linkage Clustering
• *Zahn’71] Clustering via MST (Single-linkage):

k clusters: remove 𝒌 − 𝟏 longest edges from MST

• Maximizes minimum intercluster distance

[Kleinberg, Tardos]

Earth-Mover Distance

• Computer vision: compare two pictures of
moving objects (stars, MRI scans)

Large geometric graphs
• Graph algorithms: Dense graphs vs. sparse graphs

– Dense: 𝑺 ≫ |𝑉|.

– Sparse: 𝑺 ≪ |𝑉|.

• Our setting:
– Dense graphs, sparsely represented: O(n) space

– Output doesn’t fit on one machine (𝑺 ≪ 𝒏)

• Today: (1 + 𝜖)-approximate MST
– 𝒅 = 2 (easy to generalize)

– 𝑹 = log𝑺 𝒏= O(1) rounds (𝑺 = 𝒏𝛀(𝟏))

𝑂(log 𝑛)-MST in 𝑅 = 𝑂(log 𝑛) rounds

• Assume points have integer coordinates 0,… , Δ , where
Δ = 𝑂 𝒏𝟐 .

Impose an 𝑂(log 𝒏)-depth quadtree
Bottom-up: For each cell in the quadtree

– compute optimum MSTs in subcells
– Use only one representative from each cell on the next level

Wrong representative:
O(1)-approximation per level

Wrong representative:
O(1)-approximation per level

𝝐𝑳-nets
• 𝝐𝑳-net for a cell C with side length 𝑳:

Collection S of vertices in C, every vertex is at distance <= 𝝐𝑳 from some
vertex in S. (Fact: Can efficiently compute 𝝐-net of size 𝑂

1

𝝐2
)

 Bottom-up: For each cell in the quadtree
– Compute optimum MSTs in subcells
– Use 𝝐𝑳-net from each cell on the next level

• Idea: Pay only O(𝝐𝑳) for an edge cut by cell with side 𝑳
• Randomly shift the quadtree:
Pr 𝑐𝑢𝑡 𝑒𝑑𝑔𝑒 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡 ℓ 𝑏𝑦 𝑳 ∼ ℓ/𝑳 – charge errors

𝑳 𝑳 𝜖𝑳

Randomly shifted quadtree
• Top cell shifted by a random vector in 0, 𝑳 2

Impose a randomly shifted quadtree (top cell length 𝟐𝚫)

 Bottom-up: For each cell in the quadtree

– Compute optimum MSTs in subcells

– Use 𝝐𝑳-net from each cell on the next level

Pay 5 instead of 4
Pr[𝐁𝐚𝐝 𝐂𝐮𝐭] = 𝛀(1)

2

1

𝐁𝐚𝐝 𝐂𝐮𝐭

1 + 𝝐 -MST in 𝐑 = 𝑂(log 𝑛) rounds
• Idea: Only use short edges inside the cells

Impose a randomly shifted quadtree (top cell length
𝟐𝚫

𝝐
)

 Bottom-up: For each node (cell) in the quadtree

– compute optimum Minimum Spanning Forests in subcells,
using edges of length ≤ 𝝐𝑳

– Use only 𝝐𝟐𝑳-net from each cell on the next level

Sketch of analysis (𝑻∗ = optimum MST):
𝔼[Extra cost] =
𝔼, Pr 𝒆 𝑖𝑠 𝑐𝑢𝑡 𝑏𝑦 𝑐𝑒𝑙𝑙 𝑤𝑖𝑡 𝑠𝑖𝑑𝑒 𝑳 ⋅ 𝝐𝑳𝒆∈𝑻∗ -

≤ 𝝐 log 𝒏 𝑑 𝒆

𝒆∈𝑻∗

=

𝝐 log 𝒏 ⋅ 𝑐𝑜𝑠𝑡(𝑻∗)

2

1

Pr[𝐁𝐚𝐝 𝐂𝐮𝐭] = 𝑶(𝝐)

𝑳 = 𝛀(
𝟏

𝝐
)

1 + 𝝐 -MST in 𝐑 = 𝑂(1) rounds

• 𝑂(log 𝒏) rounds => O(log𝑺 𝒏) = O(1) rounds

– Flatten the tree: (𝑴× 𝑴)-grids instead of (2x2) grids at
each level.

Impose a randomly shifted (𝑴× 𝑴)-tree

 Bottom-up: For each node (cell) in the tree

– compute optimum MSTs in subcells via edges of length ≤ 𝝐𝑳

– Use only 𝝐𝟐𝑳-net from each cell on the next level

⇒ + 𝑴 = 𝒏Ω(1)

1 + 𝝐 -MST in 𝐑 = 𝑂(1) rounds

Theorem: Let 𝒍 = # levels in a random tree P
𝔼𝑷 𝐀𝐋𝐆 ≤ 1 + 𝑂 𝝐𝒍𝒅 𝐎𝐏𝐓

Proof (sketch):
• 𝚫𝑷(𝑢, 𝑣) = cell length, which first partitions (𝑢, 𝑣)

• New weights: 𝒘𝑷 𝑢, 𝑣 = 𝑢 − 𝑣
2
+ 𝝐𝚫𝑷 𝑢, 𝑣

𝑢 − 𝑣

2
≤ 𝔼𝑷,𝒘𝑷 𝑢, 𝑣 - ≤ 1 + 𝑂 𝝐𝒍𝒅 𝑢 − 𝑣

2

• Our algorithm implements Kruskal for weights 𝒘𝑷

𝑢 𝑣

𝚫𝑷 𝑢, 𝑣

“Solve-And-Sketch” Framework

(1 + 𝜖)-MST:

– “Load balancing”: partition the tree into parts of
the same size

– Almost linear time locally: Approximate Nearest
Neighbor data structure *Indyk’99]

– Dependence on dimension d (size of 𝝐-net is

𝑂
𝒅

𝝐

𝒅
)

– Generalizes to bounded doubling dimension

– Implementation in MapReduce

“Solve-And-Sketch” Framework

(1 + 𝜖)-Earth-Mover Distance, Transportation Cost

• No simple “divide-and-conquer” Arora-Mitchell-style
algorithm (unlike for general matching)

• Only recently sequential 1 + 𝜖 -apprxoimation in

𝑂𝜖 𝒏 log
𝑂 1 𝒏 time [Sharathkumar, Agarwal ‘12]

Our approach (convex sketching):

• Switch to the flow-based version

• In every cell, send the flow to the closest net-point
until we can connect the net points

“Solve-And-Sketch” Framework

Convex sketching the cost function for 𝝉 net
points

• 𝐹:ℝ𝝉−1 → ℝ = the cost of routing fixed
amounts of flow through the net points

• Function 𝐹’ = 𝐹 + “normalization” is
monotone, convex and Lipschitz, (1 + 𝝐)-
approximates 𝐹

• We can (1 + 𝝐)-sketch it using a lower convex
hull

Thank you! http://grigory.us

Open problems:

• Exetension to high dimensions?
– Probably no, reduce from connectivity => conditional

lower bound ∶ Ω log 𝑛 rounds for MST in ℓ∞
𝑛

– The difficult setting is 𝑑 = Θ(log𝒏) (can do JL)

• Streaming alg for EMD and Transporation Cost?

• Our work:
– First near-linear time algorithm for Transportation

Cost

– Is it possible to reconstruct the solution itself?

http://grigory.us/

Class Project
• Survey of 3-5 research papers

– Closely related to the topics of the class
• Streaming
• MapReduce
• Convex Optmization
• Sublinear Time Algorithms

– Office hours if you need suggestions
– Individual or groups of 2 people
– Deadline: December 18, 2015 at 23:59 EST

• Submission by e-mail grigory@grigory.us
– Submission Email Title: Project + Space + “Your Name”
– One submission per group listing participants
– Submission format

• PDF from LaTeX (best)
• PDF

mailto:grigory@grigory.us

Example: Gradient Descent in
TensorFlow

• Gradient Descent (covered in class)
• Adagrad:

http://www.magicbroom.info/Papers/DuchiHaSi10.pdf
• Momentum (stochastic gradient descent + tweaks):

http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf
• Adam (Adaptive + momentum):

http://arxiv.org/pdf/1412.6980.pdf
• FTRL:

http://jmlr.org/proceedings/papers/v15/mcmahan11b/mc
mahan11b.pdf

• RMSProp:
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_
slides_lec6.pdf

http://www.magicbroom.info/Papers/DuchiHaSi10.pdf
http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf
http://arxiv.org/pdf/1412.6980.pdf
http://jmlr.org/proceedings/papers/v15/mcmahan11b/mcmahan11b.pdf
http://jmlr.org/proceedings/papers/v15/mcmahan11b/mcmahan11b.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

K-means Clustering

• Given X = *𝑥1, … , 𝑥𝑛+ ∈ ℝ
𝑑 find a set of centers

𝐶 = (𝑐1, … , 𝑐𝑘) that minimizes

 min
𝑖∈,𝑘-

𝑥 − 𝑐𝑖
2

𝑥∈𝑋

• NP-hard problem
• Popular heuristic local search (Lloyd’s alg.)
• For a fixed partitioning 𝑃1, … , 𝑃𝑘:

𝑐𝑗 =
1

𝑃𝑗
⋅ 𝑥𝑖
𝑖∈𝑃𝑗

Dimension reduction for K-means

• Let 𝑐𝑜𝑠𝑡𝑃 𝑋 = inf𝑐 𝑐𝑜𝑠𝑡𝑃,𝑐(𝑋)

• For 0 < 𝜖 <
1

2
 let 𝑓: 𝑋 → ℝ𝑛 be such that

∀𝑖, 𝑗: 1 − 𝜖 𝑥𝑖 − 𝑥𝑗
2

2
≤ 𝑓 𝑥𝑖 − 𝑓 𝑥𝑗

2

2
≤ 1 + 𝜖 𝑥𝑖 − 𝑥𝑗

2

2

• 𝑃 is a 𝛾-approx. clustering for 𝑓 𝑋

• 𝑃∗ is an optimal clustering for 𝑋

• Lemma.

𝑐𝑜𝑠𝑡𝑃 ≤ 𝛾
1 + 𝜖

1 − 𝜖
𝑐𝑜𝑠𝑡𝑃∗(𝑋)

Dimension reduction for K-means

• Let 𝑐𝑜𝑠𝑡𝑃 𝑋 = inf𝑐 𝑐𝑜𝑠𝑡𝑃,𝑐(𝑋)

• For 0 < 𝜖 <
1

2
 let 𝑓: 𝑋 → ℝ𝑑

′
 be such that

∀𝑖, 𝑗: 1 − 𝜖 𝑥𝑖 − 𝑥𝑗
2

2
≤ 𝑓 𝑥𝑖 − 𝑓 𝑥𝑗

2

2
≤ 1 + 𝜖 𝑥𝑖 − 𝑥𝑗

2

2

• 𝑃 is a 𝛾-approx. clustering for 𝑓 𝑋

• 𝑃∗ is an optimal clustering for 𝑋

• Lemma.

𝑐𝑜𝑠𝑡𝑃 ≤ 𝛾
1 + 𝜖

1 − 𝜖
𝑐𝑜𝑠𝑡𝑃∗(𝑋)

• 𝑑′ = 𝑂 log
𝑛

𝜖2
 suffices by the JL-lemma

Dimension reduction for K-means

• Fix a partition 𝑃 = 𝑃1, … , 𝑃𝑘

𝑐𝑜𝑠𝑡𝑃 𝑋 = 𝑥𝑖 −
1

𝑃𝑗
 𝑥𝑖′

𝑖′∈𝑃𝑗
2

2

𝑖∈𝑃𝑗𝑗∈,𝑘-

=
1

𝑃𝑗
 𝑥𝑖 2

2
− 2 𝑥𝑖 , 𝑥𝑖

′

𝑖′∈ P𝑗

+

𝑖′∈𝑃𝑗

 𝑥𝑖
′

𝑖′∈ P𝑗
2

2

𝑖∈𝑃𝑗𝑗∈,𝑘-

=
1

𝑃𝑗

𝑥𝑖 2
2
+ 𝑥𝑖

′
2

2

2
− 𝑥𝑖 , 𝑥𝑖′

𝑖′∈𝑃𝑗𝑖∈𝑃𝑗

𝑗∈,𝑘-

1

2 𝑃𝑗
 𝑥𝑖 − 𝑥𝑖′ 2

2

𝑖′∈𝑃𝑗𝑖∈𝑃𝑗

𝑗∈,𝑘-

• 1 − 𝜖 𝑐𝑜𝑠𝑡𝑃 𝑋 ≤ 𝑐𝑜𝑠𝑡𝑃 𝑓 𝑋 ≤ 1 + 𝜖 𝑐𝑜𝑠𝑡𝑃(𝑋)

• 1 − 𝜖 𝑐𝑜𝑠𝑡𝑃 𝑋 ≤ 𝑐𝑜𝑠𝑡𝑃 𝑓 𝑋 ≤ 𝛾 𝑐𝑜𝑠𝑡𝑃∗ 𝑓 𝑋 ≤ 𝛾 𝑐𝑜𝑠𝑡𝑃∗ 𝑋

K-means++ Algorithm

• First center uniformly at random from 𝑋

• For a set of centers 𝐶 let:

𝑑2 𝑥, 𝐶 = min
𝑐∈𝐶
 𝑥 − 𝑐

2

2

• Fix current set of centers 𝐶

• Subsequent centers: each 𝑥𝑖 with prob.
𝑑2(𝑥𝑖 , 𝐶)

 𝑑2(𝑥𝑗 , 𝐶)𝑥𝑗∈𝑋

• Gives 𝑂 log 𝑘 -approx. to OPT in expectation

K-means∥ Algorithm

• First center 𝐶: sample a point uniformly
• Initial cost 𝜓 = 𝑑2(𝑥, 𝐶)𝑥
• For 𝑂(log𝜓) times do:

– Repeat ℓ times (in parallel)
• 𝐶′ = sample each 𝑥𝑖 ∈ 𝑋 indep. with prob.

𝑝𝑥 =
𝑑2(𝑥𝑖 , 𝐶)

 𝑑2(𝑥𝑗 , 𝐶)𝑥𝑗∈𝑋

• 𝐶 ← 𝐶 ∪ 𝐶′

• For 𝑥 ∈ 𝐶:
𝑤𝑥 = the #points belonging to this center

• Cluster the weighted points in 𝐶 into 𝑘 clusters

K-means∥ Algorithm

• Oversampling factor ℓ = Θ 𝑘

• #points in 𝐶: ℓ log𝜓

• Thm. If 𝛼-approx. used in the last step then 𝑘-
means∥ obtains an 𝑂 𝛼 -approx. to k-means

• If Ψ and Ψ′ are the costs of clustering before
and after one outer loop iteration then:

𝐸 Ψ′ = 𝑂 𝑂𝑃𝑇 +
𝑘

𝑒ℓ
Ψ

K-means∥ Analysis

• For a set of points 𝐴 = *𝑎1, … , 𝑎𝑡+ centroid 𝑐𝐴:

𝑐𝐴 =
1

𝑇
 𝑎𝑡

• Order 𝑎1, … , 𝑎𝑇 in the increasing order by distance from 𝑐𝐴
• Fix a cluster 𝐴 in OPT
• Fix 𝐶 prior to the iteration and let:

𝜙 𝐶 = 𝑑2(𝑥, 𝐶)

𝑥

𝜙𝐴 𝐶 = 𝑑2(𝑎, 𝐶)

𝑎

• Let 𝑝𝑡 =
𝑑2(𝑎𝑡,𝐶)

𝜙(𝐶)
 be the probability of selecting 𝑎𝑡

• Probability that 𝑎𝑡 is the smallest one chosen:

𝑞𝑡 = 𝑝𝑡 (1− 𝑝𝑗)

𝑡−1

𝑗=1

K-means∥ Analysis

• Can either assign all points to some selected
𝑎𝑡 or keep the original clustering:

𝑠𝑡 = min 𝜙𝐴, 𝑎 − 𝑎𝑡
2

𝑎∈𝐴

• 𝐸 𝜙𝐴 𝐶 ∪ 𝐶
′ ≤ 𝑞𝑡𝑠𝑡 + 𝑞𝑇+1𝑡 𝜙𝐴 𝐶

where 𝑞𝑇+1= prob. that no point in 𝐴 is selected

• Simplifying assumption: consider the case
when all 𝑝𝑡 = 𝑝 (mean field analysis)

• 𝑞𝑡 = 𝑝 1 − 𝑝
𝑡 (decreasing sequence)

K-means∥ Analysis

• 𝑠𝑡
′ = 𝑎 − 𝑎𝑡

2
𝑎∈𝐴

• 𝑠𝑡
′ is an increasing sequence

 𝑞𝑡𝑠𝑡 ≤ 𝑞𝑡𝑠𝑡
′

𝑡𝑡

≤
1

𝑇
 𝑞𝑡
𝑡

 𝑠𝑡
′

𝑡

= 𝑞𝑡
𝑡

⋅
1

𝑇
 𝑠𝑡

′

𝑡

= 𝑞𝑡
𝑡

⋅ 2 𝜙𝐴
∗

• 𝐸 𝜙𝐴 𝐶 ∪ 𝐶
′ ≤ (1 − 𝑞𝑇+1) 2 𝜙𝐴

∗+ 𝑞𝑇+1 𝜙𝐴(𝐶)

