CIS 700: "algorithms for Big Data" Lecture 10: **Massively Parallel Algorithms**

Slides at http://grigory.us/big-data-class.html

Grigory Yaroslavtsev http://grigory.us

Computational Model

- Input: size n
- *M* machines, space *S* on each ($S = n^{1-\epsilon}$, $0 < \epsilon < 1$) - Constant overhead in total space: $M \cdot S = O(n)$
- Output: solution to a problem (often size O(n))
 Doesn't fit on a single machine (S << n)

Computational Model

- Computation/Communication in **R** rounds:
 - Every machine performs a near-linear time computation => Total running time O(n^{1+o(1)}R)
 - Every machine sends/receives at most S bits of information => Total communication O(nR).

MapReduce-style computations

YAHOO! Google

What I won't discuss today

- PRAMs (shared memory, multiple processors) (see e.g. [Karloff, Suri, Vassilvitskii'10])
 - Computing XOR requires $\widetilde{\Omega}(\log n)$ rounds in CRCW PRAM
 - Can be done in $O(\log_s n)$ rounds of MapReduce
- Pregel-style systems, Distributed Hash Tables (see e.g. Ashish Goel's class notes and papers)
- Lower-level implementation details (see e.g. Rajaraman-Leskovec-Ullman book)

Models of parallel computation

- Bulk-Synchronous Parallel Model (BSP) [Valiant,90]
 Pro: Most general, generalizes all other models
 Con: Many parameters, hard to design algorithms
- Massive Parallel Computation [Feldman-Muthukrishnan-Sidiropoulos-Stein-Svitkina'07, Karloff-Suri-Vassilvitskii'10, Goodrich-Sitchinava-Zhang'11, ..., Beame, Koutris, Suciu'13]
 Pros:
 - Inspired by **modern** systems (Hadoop, MapReduce, Dryad, ...)
 - Few parameters, **simple** to design algorithms
 - New algorithmic ideas, robust to the exact model specification
 - # Rounds is an information-theoretic measure => can prove unconditional lower bounds
 - Between linear sketching and streaming with sorting

Sorting: Terasort

- Sorting n keys on $M = O(n^{1-\alpha})$ machines
 - Would like to partition keys uniformly into blocks: first n/M, second n/M, etc.
 - Sort the keys locally on each machine
- Build an approximate histogram:
 - Each machine takes a sample of size s
 - All $M * s \leq S = n^{\alpha}$ samples are sorted locally
 - Blocks are computed based on the samples
- By Chernoff bound $\mathbf{M} * \mathbf{s} = O\left(\frac{\log n}{\epsilon^2}\right)$ samples suffice to compute al block sizes with $\pm \epsilon \mathbf{n}$ error

• Take
$$\epsilon = \frac{n^{\alpha-1}}{2}$$
: error $O(S)$; $\mathbf{M} * \mathbf{s} = \widetilde{O}(n^{2-2\alpha}) = O(M^2) \le O(n^{\alpha})$ for $\alpha \ge 2/3$

Algorithms for Graphs

- **Dense graphs** vs. sparse graphs
 - Dense: $S \gg |V|$
 - Linear sketching: one round
 - "Filtering" (Output fits on a single machine) [Karloff, Suri Vassilvitskii, SODA'10; Ene, Im, Moseley, KDD'11; Lattanzi, Moseley, Suri, Vassilvitskii, SPAA'11; Suri, Vassilvitskii, WWW'11]
 - Sparse: $S \ll |V|$ (or $S \ll$ solution size)

Sparse graph problems appear hard (**Big open question**: connectivity in $o(\log n)$ rounds?)

Algorithm for Connectivity

- Version of Boruvka's algorithm
- Repeat $O(\log n)$ times:
 - Each component chooses a neighboring component
 - All pairs of chosen components get merged
- How to avoid **chaining**?
- If the graph of components is bipartite and only one side gets to choose then no chaining
- Randomly assign components to the sides

Algorithm for Connectivity: Setup

Data: **N** edges of an undirected graph.

Notation:

- For $v \in V$ let $\pi(v)$ be its id in the data
- $\Gamma(S) \equiv$ set of neighbors of a subset of vertices S \subseteq V.

Labels:

- Algorithms assigns a label $\ell(v)$ to each v.
- Let $L_v \subseteq V$ be the set of vertices with the label $\ell(v)$ (invariant: subset of the connected component containing v).

Active vertices:

- Some vertices will be called **active**.
- Every set L_v will have exactly one active vertex.

Algorithm for Connectivity

- Mark every vertex as **active** and let $\ell(v) = \pi(v)$.
- For phases $i = 1, 2, ..., O(\log N)$ do:
 - Call each **active** vertex a **leader** with probability 1/2. If v is a **leader**, mark all vertices in L_v as **leaders**.
 - For every **active non-leader** vertex w, find the smallest **leader**(with respect to π) vertex w^{*} $\in \Gamma(L_w)$.
 - If w^* is not empty, mark w **passive** and relabel each vertex with label w by w^* .
- Output the set of CCs, where vertices having the same label according to *l* are in the same component.

Algorithm for Connectivity: Analysis

- If $\ell(u) = \ell(v)$ then u and v are in the same CC.
- Unique labels w.h.p after $O(\log N)$ phases.
- For every CC # active vertices reduces by a constant factor in every phase.
 - Half of the active vertices declared as non-leaders.
 - Fix an active **non-leader** vertex \boldsymbol{v} .
 - If at least two different labels in the CC of v then there is an edge (v', u) such that $\ell(v) = \ell(v')$ and $\ell(v') \neq \ell(u)$.
 - *u* marked as a leader with probability 1/2; in expectation half of the active non-leader vertices will change their label.
 - Overall, expect 1/4 of labels to disappear.
 - By Chernoff after O(log N) phases # of active labels in every connected component will drop to one w.h.p.

Algorithm for Connectivity: Implementation Details

- Distributed data structure of size O(|V|) to maintain labels, ids, leader/non-leader status, etc.
 O(1) rounds per stage to update the data structure
- Edges stored locally with all auxiliary info
 - Between stages: use distributed data structure to update local info on edges
- For every **active non-leader** vertex w, find the smallest **leader** (w.r.t π) vertex w^{*} $\in \Gamma(L_w)$
 - Each (non-leader, leader) edges sends an update to the distributed data structure
- Much faster with Distributed Hash Table Service (DHT) [Kiveris, Lattanzi, Mirrokni, Rastogi, Vassilvitskii'14]

Applications

- Using same reductions as in streaming:
 - Bipartiteness
 - k-connectivity
 - Cut-sparsification

Approximating Geometric Problems in Parallel Models

Geometric graph (implicit):

Euclidean distances between **n** points in \mathbb{R}^d

Already have solutions for old NP-hard problems (Traveling Salesman, Steiner Tree, etc.)

- Minimum Spanning Tree (clustering, vision)
- Minimum Cost Bichromatic Matching (vision)

Geometric Graph Problems

Combinatorial problems on graphs in \mathbb{R}^d

Polynomial time ("easy")

- Minimum Spanning Tree
- Earth-Mover Distance =

Min Weight Bi-chromatic Matching

Mard ("hard")

- Steiner Tree
- Traveling Salesman
- Clustering (k-medians, facility location, etc.)

theory!

eed new

Arora-Mitchell-style

"Divide and conquer",

easy to implement in

Computational Models,

but bad running time

Massively Parallel

MST: Single Linkage Clustering

- [Zahn'71] **Clustering** via MST (Single-linkage):
- k clusters: remove k 1 longest edges from MST
- Maximizes **minimum** intercluster distance

[Kleinberg, Tardos]

Earth-Mover Distance

 Computer vision: compare two pictures of moving objects (stars, MRI scans)

Large geometric graphs

- Graph algorithms: **Dense graphs** vs. sparse graphs
 - Dense: $S \gg |V|$.
 - Sparse: $S \ll |V|$.
- Our setting:
 - Dense graphs, sparsely represented: O(n) space
 - Output doesn't fit on one machine ($S \ll n$)
- **Today:** $(1 + \epsilon)$ -approximate MST
 - d = 2 (easy to generalize)
 - $\mathbf{R} = \log_S \mathbf{n} = O(1)$ rounds ($S = \mathbf{n}^{\Omega(1)}$)

$O(\log n)$ -MST in $\mathbf{R} = O(\log n)$ rounds

• Assume points have integer coordinates $[0, ..., \Delta]$, where $\Delta = O(n^2)$.

EL-nets

εL-net for a cell C with side length L: Collection S of vertices in C, every vertex is at distance <= *εL* from some vertex in S. (Fact: Can efficiently compute *ε*-net of size O (¹/_{ε²}))

Bottom-up: For each cell in the quadtree

- Compute optimum MSTs in subcells
- Use ϵL -net from each cell on the next level
- Idea: Pay only O(*EL*) for an edge cut by cell with side *L*
- Randomly shift the quadtree: Pr[cut edge of length Moons] presentation per level
 O(1)-approximation per level

Randomly shifted quadtree

• Top cell shifted by a random vector in $[0, L]^2$

Impose a randomly shifted quadtree (top cell length 2Δ) Bottom-up: For each cell in the quadtree

- Compute optimum MSTs in subcells
- Use ϵL -net from each cell on the next level

$(1 + \epsilon)$ -MST in **R** = $O(\log n)$ rounds

• Idea: Only use short edges inside the cells

Impose a randomly shifted quadtree (top cell length $\frac{2\Delta}{\epsilon}$)

Bottom-up: For each node (cell) in the quadtree

- compute optimum Minimum Spanning Forests in subcells, using edges of length $\leq \epsilon L$
- Use only $\epsilon^2 L$ -net from each cell on the next level

$(1 + \epsilon)$ -MST in $\mathbf{R} = O(1)$ rounds

- $O(\log n)$ rounds => $O(\log_s n)$ = O(1) rounds
 - Flatten the tree: $(\sqrt{M} \times \sqrt{M})$ -grids instead of (2x2) grids at each level.

Impose a randomly shifted ($\sqrt{M} \times \sqrt{M}$)-tree

Bottom-up: For each node (cell) in the tree

- compute optimum MSTs in subcells via edges of length $\leq \epsilon L$
- Use only $\epsilon^2 L$ -net from each cell on the next level

$(1 + \epsilon)$ -MST in $\mathbf{R} = O(1)$ rounds

Theorem: Let l = # levels in a random tree P $\mathbb{E}_{P}[ALG] \leq (1 + O(\epsilon ld))OPT$

Proof (sketch):

- $\Delta_P(u, v)$ = cell length, which first partitions (u, v)
- New weights: $w_P(u, v) = ||u v||_2 + \epsilon \Delta_P(u, v)$ $||u - v||_2 \leq \mathbb{E}_P[w_P(u, v)] \leq (1 + O(\epsilon d)) ||(u, v)v||_2$
- Our algorithm implements Kruskal for weights w_P

"Solve-And-Sketch" Framework

$(1 + \epsilon)$ -MST:

- "Load balancing": partition the tree into parts of the same size
- Almost linear time locally: Approximate Nearest
 Neighbor data structure [Indyk'99]
- Dependence on dimension **d** (size of ϵ -net is $O\left(\frac{d}{\epsilon}\right)^d$)
- Generalizes to bounded **doubling dimension**
- Implementation in MapReduce

"Solve-And-Sketch" Framework

$(1 + \epsilon)$ -Earth-Mover Distance, Transportation Cost

- No simple "divide-and-conquer" Arora-Mitchell-style algorithm (unlike for general matching)
- Only recently sequential $(1 + \epsilon)$ -apprxoimation in $O_{\epsilon}(n \log^{O(1)} n)$ time [Sharathkumar, Agarwal '12]

Our approach (convex sketching):

- Switch to the flow-based version
- In every cell, send the flow to the closest net-point until we can connect the net points

"Solve-And-Sketch" Framework

Convex sketching the cost function for τ net points

- $F: \mathbb{R}^{\tau-1} \to \mathbb{R}$ = the cost of routing fixed amounts of flow through the net points
- Function F' = F + "normalization" is monotone, convex and Lipschitz, (1 + €)approximates F
- We can (1 +
 e)-sketch it using a lower convex hull

Thank you! <u>http://grigory.us</u>

Open problems:

- Exetension to high dimensions?
 - Probably no, reduce from connectivity => conditional lower bound : Ω(log n) rounds for MST in lⁿ_∞
 The difficult setting is d = Θ(log n) (can do JL)
- Streaming alg for EMD and Transporation Cost?
- Our work:
 - First near-linear time algorithm for Transportation
 Cost
 - Is it possible to reconstruct the solution itself?

Class Project

- Survey of 3-5 research papers
 - Closely related to the topics of the class
 - Streaming
 - MapReduce
 - Convex Optmization
 - Sublinear Time Algorithms
 - Office hours if you need suggestions
 - Individual or groups of 2 people
 - Deadline: December 18, 2015 at 23:59 EST
- Submission by e-mail grigory@grigory.us
 - Submission Email Title: Project + Space + "Your Name"
 - One submission per group listing participants
 - Submission format
 - PDF from LaTeX (best)
 - PDF

Example: Gradient Descent in TensorFlow

- Gradient Descent (covered in class)
- Adagrad: <u>http://www.magicbroom.info/Papers/DuchiHaSi10.pdf</u>
- Momentum (stochastic gradient descent + tweaks): <u>http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf</u>
- Adam (Adaptive + momentum): <u>http://arxiv.org/pdf/1412.6980.pdf</u>
- FTRL: <u>http://jmlr.org/proceedings/papers/v15/mcmahan11b/mc</u> <u>mahan11b.pdf</u>
- RMSProp: <u>http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture</u> <u>slides_lec6.pdf</u>

K-means Clustering

• Given $X = \{x_1, ..., x_n\} \in \mathbb{R}^d$ find a set of centers $C = (c_1, ..., c_k)$ that minimizes $\sum \min \left\| |x_1 - c_1| \right\|^2$

$$\sum_{x \in X} \min_{i \in [k]} ||x - c_i||^2$$

- NP-hard problem
- Popular heuristic local search (Lloyd's alg.)
- For a fixed partitioning P_1, \ldots, P_k :

$$c_j = \frac{1}{|P_j|} \cdot \sum_{i \in P_j} x_i$$

Dimension reduction for K-means

- Let $cost_P(X) = inf_c cost_{P,c}(X)$
- For $0 < \epsilon < \frac{1}{2} \operatorname{let} f: X \to \mathbb{R}^n$ be such that $\forall i, j: (1 - \epsilon) \left| \left| x_i - x_j \right| \right|_2^2 \leq \left| \left| f(x_i) - f(x_j) \right| \right|_2^2 \leq (1 + \epsilon) \left| \left| x_i - x_j \right| \right|_2^2$
- \hat{P} is a γ -approx. clustering for f(X)
- *P*^{*} is an optimal clustering for *X*
- Lemma.

$$cost_{\hat{P}} \leq \gamma\left(\frac{1+\epsilon}{1-\epsilon}\right)cost_{P^*}(X)$$

Dimension reduction for K-means

- Let $cost_P(X) = inf_c cost_{P,c}(X)$
- For $0 < \epsilon < \frac{1}{2} \operatorname{let} f: X \to \mathbb{R}^{d'}$ be such that $\forall i, j: (1 - \epsilon) \left| \left| x_i - x_j \right| \right|_2^2 \le \left| \left| f(x_i) - f(x_j) \right| \right|_2^2 \le (1 + \epsilon) \left| \left| x_i - x_j \right| \right|_2^2$
- \hat{P} is a γ -approx. clustering for f(X)
- P* is an optimal clustering for X
- Lemma.

$$cost_{\widehat{P}} \leq \gamma\left(\frac{1+\epsilon}{1-\epsilon}\right)cost_{P^{*}}(X)$$

• $d' = O\left(\log \frac{n}{\epsilon^2}\right)$ suffices by the JL-lemma

Dimension reduction for K-means

• Fix a partition $P = (P_1, ..., P_k)$

$$cost_{P}(X) = \sum_{j \in [k]} \sum_{i \in P_{j}} \left\| x_{i} - \frac{1}{|P_{j}|} \sum_{i' \in P_{j}} x_{i'} \right\|_{2}^{2}$$
$$= \sum_{j \in [k]} \frac{1}{|P_{j}|} \sum_{i \in P_{j}} \left(\sum_{i' \in P_{j}} ||x_{i}||_{2}^{2} - 2 \langle x_{i}, \sum_{i' \in P_{j}} x_{i'} \rangle + \left\| \sum_{i' \in P_{j}} x_{i'}^{\prime} \right\|_{2}^{2} \right)$$
$$= \sum_{j \in [k]} \frac{1}{|P_{j}|} \sum_{i \in P_{j}} \sum_{i' \in P_{j}} \left(\frac{||x_{i}||_{2}^{2} + ||x_{i'}||_{2}^{2}}{2} - \langle x_{i}, x_{i'} \rangle \right)$$
$$\sum_{j \in [k]} \frac{1}{2|P_{j}|} \sum_{i \in P_{j}} \sum_{i' \in P_{j}} \left(||x_{i} - x_{i'}||_{2}^{2} \right)$$

• $(1 - \epsilon)cost_P(X) \le cost_P(f(X)) \le (1 + \epsilon)cost_P(X)$

• $(1-\epsilon)cost_{\hat{P}}(X) \leq cost_{\hat{P}}(f(X)) \leq \gamma cost_{P^*}(f(X)) \leq \gamma cost_{P^*}(X)$

K-means++ Algorithm

- First center uniformly at random from X
- For a set of centers *C* let:

$$d^{2}(x,C) = \min_{c \in C} ||x-c||_{2}^{2}$$

- Fix current set of centers *C*
- Subsequent centers: each x_i with prob. $d^2(x_i, C)$

$$\sum_{x_j \in X} d^2(x_j, C)$$

Gives O(log k)-approx. to OPT in expectation

K-means || Algorithm

- First center C: sample a point uniformly
- Initial cost $\psi = \sum_{x} d^{2}(x, C)$
- For $O(\log \psi)$ times do:
 - Repeat ℓ times (in parallel)
 - $C' = \text{sample each } x_i \in X \text{ indep. with prob.}$

$$p_x = \frac{d^2(x_i, C)}{\sum_{x_j \in X} d^2(x_j, C)}$$

• $C \leftarrow C \cup C'$ • For $x \in C$:

 w_{χ} = the #points belonging to this center

• Cluster the weighted points in C into k clusters

K-means || Algorithm

- Oversampling factor $\ell = \Theta(k)$
- #points in $C: \ell \log \psi$
- Thm. If α -approx. used in the last step then k-means \parallel obtains an $O(\alpha)$ -approx. to k-means
- If Ψ and Ψ' are the costs of clustering before and after one outer loop iteration then:

$$E[\Psi'] = O(OPT) + \frac{k}{e\ell}\Psi$$

K-means || Analysis

• For a set of points $A = \{a_1, \dots, a_t\}$ centroid c_A :

$$c_A = \frac{1}{|T|} \sum a_t$$

- Order a_1, \ldots, a_T in the increasing order by distance from c_A
- Fix a cluster A in OPT
- Fix *C* prior to the iteration and let:

$$\phi(C) = \sum_{x} d^{2}(x, C)$$
$$\phi_{A}(C) = \sum_{a} d^{2}(a, C)$$

- Let $p_t = \frac{d^2(a_t, C)}{\phi(C)}$ be the probability of selecting a_t
- Probability that a_t is the smallest one chosen:

$$q_t = p_t \prod_{j=1}^{t-1} (1-p_j)$$

K-means || Analysis

 Can either assign all points to some selected *a_t* or keep the original clustering:

$$s_t = \min\left(\phi_A, \sum_{a \in A} \left| |a - a_t| \right|^2\right)$$

• $E[\phi_A(C \cup C')] \leq \sum_t q_t s_t + q_{T+1} \phi_A(C)$

where q_{T+1} = prob. that no point in A is selected

- Simplifying assumption: consider the case when all $p_t = p$ (mean field analysis)
- $q_t = p(1-p)^t$ (decreasing sequence)

K-means|| Analysis

•
$$s'_t = \sum_{a \in A} \left| |a - a_t| \right|^2$$

• $\{s'_t\}$ is an increasing sequence

• $E[\phi_A(C \cup C')] \le (1 - q_{T+1}) 2 \phi_A^* + q_{T+1} \phi_A(C)$