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Computational Model 
• Input: size n 

• 𝑴 machines, space 𝑺 on each (𝑺 = 𝒏1−𝜖 , 0 < 𝜖 < 1 ) 

– Constant overhead in total space: 𝑴 ⋅ 𝑺 =  𝑂(𝒏) 

• Output: solution to a problem (often size O(𝒏)) 

– Doesn’t fit on a single machine (𝑺 ≪  𝒏) 

 

 

 

+ 𝑴 machines + 
S space 

𝐈𝐧𝐩𝐮𝐭: size 𝒏  ⇒ ⇒ 𝐎𝐮𝐭𝐩𝐮𝐭: 𝑠𝑖𝑧𝑒 𝑂(𝒏) 



+ 𝑴 machines + 
S space 

Computational Model 
• Computation/Communication in 𝑹 rounds: 

– Every machine performs a near-linear time 
computation => Total running time 𝑂(𝒏𝟏+𝒐(𝟏)𝑹) 

– Every machine sends/receives at most 𝑺 bits of 
information => Total communication 𝑂(𝒏𝑹). 

 
Goal: Minimize 𝑹.                        Ideally: 𝑹 = constant. 

 

𝑶(𝑺𝟏+𝒐(𝟏)) time 

≤ 𝑺 bits 



MapReduce-style computations 

 
What I won’t discuss today 
• PRAMs (shared memory, multiple processors) (see 

e.g. [Karloff, Suri, Vassilvitskii‘10]) 
– Computing XOR requires Ω (log 𝑛) rounds in CRCW PRAM 
– Can be done in 𝑂(log𝒔 𝑛) rounds of MapReduce 

• Pregel-style systems, Distributed Hash Tables (see 
e.g. Ashish Goel’s class notes and papers) 

• Lower-level implementation details (see e.g. 
Rajaraman-Leskovec-Ullman book) 

 



Models of parallel computation 
• Bulk-Synchronous Parallel Model (BSP) [Valiant,90]  

Pro: Most general, generalizes all other models 

Con: Many parameters, hard to design algorithms 

• Massive Parallel Computation [Feldman-Muthukrishnan-
Sidiropoulos-Stein-Svitkina’07, Karloff-Suri-Vassilvitskii’10, 
Goodrich-Sitchinava-Zhang’11, ..., Beame, Koutris, Suciu’13] 

Pros:  

• Inspired by modern systems (Hadoop, MapReduce, Dryad, … ) 

• Few parameters, simple to design algorithms 

• New algorithmic ideas, robust to the exact model specification 

• # Rounds is an information-theoretic measure => can prove 
unconditional lower bounds 

• Between linear sketching and streaming with sorting 

 

 



Sorting: Terasort 

• Sorting 𝒏 keys on 𝑴 = 𝑶(𝒏𝟏−𝜶) machines 
– Would like to partition keys uniformly into blocks: first 
𝒏/𝑴, second 𝒏/𝑴, etc. 

– Sort the keys locally on each machine 

• Build an approximate histogram: 
– Each machine takes a sample of size 𝒔 
– All 𝑴 ∗ 𝒔 ≤ 𝑺 = 𝒏𝜶 samples are sorted locally 
– Blocks are computed based on the samples 

• By Chernoff bound 𝐌 ∗ 𝒔 = 𝑂
𝑙𝑜𝑔 𝒏

𝝐𝟐
  samples suffice 

to compute al block sizes with ±𝜖𝒏 error 

• Take 𝜖 =
𝒏𝛼−1

2
: error O 𝑺 ;  𝐌 ∗ 𝒔 = 𝑂( 𝒏2−𝟐𝜶) =

𝑶(𝑴𝟐) ≤ 𝑶(𝒏𝜶) for 𝛼 ≥ 2/3  
 



Algorithms for Graphs 
• Dense graphs vs. sparse graphs 

– Dense: 𝑺 ≫ |𝑉| 

• Linear sketching: one round 

• “Filtering” (Output fits on a single machine) [Karloff, 
Suri Vassilvitskii, SODA’10; Ene, Im, Moseley, KDD’11; 
Lattanzi, Moseley, Suri, Vassilvitskii, SPAA’11; Suri, 
Vassilvitskii, WWW’11] 

– Sparse: 𝑺 ≪ |𝑉| (or 𝑺 ≪ solution size) 

Sparse graph problems appear hard (Big open question: 
connectivity in o(log 𝑛) rounds?) 

 
VS. 



Algorithm for Connectivity 

• Version of Boruvka’s algorithm 

• Repeat 𝑂(log 𝑛) times: 
– Each component chooses a neighboring 

component 

– All pairs of chosen components get merged 

• How to avoid chaining? 

• If the graph of components is bipartite and 
only one side gets to choose then no chaining 

• Randomly assign components to the sides 
 



Algorithm for Connectivity: Setup 
Data: N edges of an undirected graph.  
 
Notation: 
• For 𝑣 ∈ 𝑉 let 𝜋(𝑣) be its id in the data 
• Γ(𝑆) ≡ set of neighbors of a subset of vertices S⊆V. 
 
Labels: 
• Algorithms assigns a label ℓ(𝑣) to each v.  
• Let 𝐿𝑣 ⊆ 𝑉 be the set of vertices with the label ℓ(𝑣) 

(invariant: subset of the connected component 
containing 𝑣).  

 
Active vertices: 
• Some vertices will be called active. 
• Every set 𝐿𝑣 will have exactly one active vertex. 

 



Algorithm for Connectivity 

• Mark every vertex  as active and let ℓ(𝑣) = 𝜋(𝑣). 

• For phases 𝑖 = 1,2, … , 𝑂(log 𝑁) do: 
– Call each active vertex a leader with probability 1/2. 

If v is a leader, mark all vertices in 𝐿𝑣 as leaders. 

– For every active non-leader vertex w, find the 
smallest leader(with respect to 𝜋) vertex w⋆ ∈ Γ(𝐿𝑤). 

– If  w⋆  is not empty, mark w passive and relabel each 
vertex with label w by  w⋆. 

• Output the set of CCs, where vertices having the 
same label according to ℓ are in the same 
component. 

 



Algorithm for Connectivity: Analysis 
• If ℓ(𝑢) = ℓ(𝑣) then 𝑢 and 𝑣 are in the same CC. 

• Unique labels w.h.p after 𝑂(log𝑁) phases.  

• For every CC # active vertices reduces by a constant 
factor in every phase.  
– Half of the active vertices declared as non-leaders.  

– Fix an active non-leader vertex 𝒗.  

– If at least two different labels in the CC of v then there is 
an edge (𝒗′, 𝒖) such that ℓ(𝒗) = ℓ(𝒗′) and ℓ(𝒗′) ≠ ℓ(𝒖).  

– 𝒖 marked as a leader with probability 1/2; in expectation 
half of the active non-leader vertices will change their 
label.  

– Overall, expect 1/4 of labels to disappear.  

– By Chernoff after 𝑂(log𝑁) phases # of active labels in 
every connected component will drop to one w.h.p. 



Algorithm for Connectivity: 
Implementation Details 

• Distributed data structure  of size 𝑂 𝑉  to maintain 
labels, ids, leader/non-leader status, etc. 
– O(1) rounds per stage to update the data structure 

• Edges stored locally with all auxiliary info 
– Between stages: use distributed data structure to update 

local info on edges 

• For every active non-leader vertex w, find the 
smallest leader (w.r.t 𝜋) vertex w⋆ ∈ Γ(𝐿𝑤) 
– Each (non-leader, leader) edges sends an update to the 

distributed data structure 

• Much faster with Distributed Hash Table Service (DHT) 
[Kiveris, Lattanzi, Mirrokni, Rastogi, Vassilvitskii’14+ 



Applications 

• Using same reductions as in streaming: 

– Bipartiteness  

– k-connectivity 

– Cut-sparsification 

 

 



Approximating Geometric Problems 
in Parallel Models 

Geometric graph (implicit):         

Euclidean distances between n points in ℝ𝒅 

 

 

 

Already have solutions for old NP-hard problems 
(Traveling Salesman, Steiner Tree, etc.) 

• Minimum Spanning Tree (clustering, vision) 

• Minimum Cost Bichromatic Matching (vision) 



Polynomial time (“easy”) 

• Minimum Spanning Tree 

• Earth-Mover Distance =  

Min Weight Bi-chromatic Matching 

 

NP-hard (“hard”) 

• Steiner Tree 

• Traveling Salesman 

• Clustering (k-medians, facility 
location, etc.) 

Geometric Graph Problems 

Combinatorial problems on graphs in ℝ𝒅 
 

Arora-Mitchell-style 
“Divide and Conquer”, 
easy  to implement in 
Massively Parallel 
Computational Models, 
but bad running time 

+ 

+ Need new theory! 



MST: Single Linkage Clustering 
• *Zahn’71] Clustering via MST (Single-linkage):  

k clusters: remove 𝒌 − 𝟏 longest edges from MST 

• Maximizes minimum intercluster distance 

[Kleinberg, Tardos] 



Earth-Mover Distance 

• Computer vision: compare two pictures of 
moving objects (stars, MRI scans) 



Large geometric graphs 
• Graph algorithms: Dense graphs vs. sparse graphs 

– Dense: 𝑺 ≫ |𝑉|.  

– Sparse: 𝑺 ≪ |𝑉|.  

 

• Our setting: 
– Dense graphs, sparsely represented: O(n) space 

– Output doesn’t fit on one machine (𝑺 ≪  𝒏) 

• Today: (1 + 𝜖)-approximate MST  
– 𝒅 = 2  (easy to generalize)  

– 𝑹 = log𝑺 𝒏= O(1) rounds (𝑺 = 𝒏𝛀(𝟏)) 

 



𝑂(log 𝑛)-MST in 𝑅 = 𝑂(log 𝑛)  rounds  

• Assume points have integer coordinates 0,… , Δ , where 
Δ = 𝑂 𝒏𝟐  . 

 
Impose an 𝑂(log 𝒏)-depth quadtree  
Bottom-up: For each cell in the quadtree  

– compute optimum MSTs in subcells 
– Use only one representative from each cell on the next level 
  

Wrong representative:  
O(1)-approximation per level 



Wrong representative:  
O(1)-approximation per level 

𝝐𝑳-nets 
• 𝝐𝑳-net for a cell C with side length 𝑳: 

Collection S of vertices in C, every vertex is at distance <= 𝝐𝑳 from some 
vertex in S. (Fact: Can efficiently compute 𝝐-net of size 𝑂

1

𝝐2
) 

      

      Bottom-up: For each cell in the quadtree  
– Compute optimum MSTs in subcells 
– Use 𝝐𝑳-net from each cell on the next level 

 

• Idea: Pay only O(𝝐𝑳) for an edge cut by cell with side 𝑳 
• Randomly shift the quadtree: 
Pr 𝑐𝑢𝑡 𝑒𝑑𝑔𝑒 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡 ℓ 𝑏𝑦 𝑳 ∼ ℓ/𝑳 – charge errors 

𝑳 𝑳 𝜖𝑳 



Randomly shifted quadtree 
• Top cell shifted by a random vector in 0, 𝑳 2 

Impose a randomly shifted quadtree (top cell length 𝟐𝚫) 

      Bottom-up: For each cell in the quadtree  

– Compute optimum MSTs in subcells 

– Use 𝝐𝑳-net from each cell on the next level 

 

 

 

 

 

Pay 5 instead of 4 
Pr[𝐁𝐚𝐝 𝐂𝐮𝐭] = 𝛀(1) 

2 
 

1 
 

𝐁𝐚𝐝 𝐂𝐮𝐭 



1 + 𝝐 -MST in 𝐑 = 𝑂(log  𝑛)  rounds  
• Idea: Only use short edges inside the cells 

Impose a randomly shifted quadtree (top cell length 
𝟐𝚫

𝝐 
 ) 

      Bottom-up: For each node (cell) in the quadtree  

– compute optimum Minimum Spanning Forests in subcells, 
using edges of length ≤ 𝝐𝑳 

– Use only 𝝐𝟐𝑳-net from each cell on the next level 

 

 

 

 

 

Sketch of analysis (𝑻∗ = optimum MST): 
𝔼[Extra cost] = 
𝔼, Pr 𝒆 𝑖𝑠 𝑐𝑢𝑡 𝑏𝑦 𝑐𝑒𝑙𝑙 𝑤𝑖𝑡 𝑠𝑖𝑑𝑒 𝑳 ⋅  𝝐𝑳𝒆∈𝑻∗  - 

≤ 𝝐 log 𝒏 𝑑 𝒆

𝒆∈𝑻∗

= 

𝝐 log 𝒏 ⋅ 𝑐𝑜𝑠𝑡(𝑻∗) 
 

2 
 

1 
 

Pr[𝐁𝐚𝐝 𝐂𝐮𝐭] = 𝑶(𝝐) 
 

𝑳 = 𝛀(
𝟏

𝝐
)  



1 + 𝝐 -MST in 𝐑 = 𝑂(1)  rounds  

• 𝑂(log 𝒏) rounds => O(log𝑺 𝒏) = O(1) rounds 

– Flatten the tree: ( 𝑴× 𝑴)-grids instead of (2x2) grids at 
each level. 

 

 

 

 

Impose a randomly shifted ( 𝑴× 𝑴)-tree 

      Bottom-up: For each node (cell) in the tree  

– compute optimum MSTs in subcells via edges of length ≤ 𝝐𝑳 

– Use only 𝝐𝟐𝑳-net from each cell on the next level 

 

⇒ + 𝑴 = 𝒏Ω(1) 
 



1 + 𝝐 -MST in 𝐑 = 𝑂(1)  rounds  

Theorem: Let 𝒍 = # levels in a random tree P 
𝔼𝑷 𝐀𝐋𝐆 ≤ 1 + 𝑂 𝝐𝒍𝒅 𝐎𝐏𝐓  

Proof (sketch):  
• 𝚫𝑷(𝑢, 𝑣) = cell length, which first partitions (𝑢, 𝑣) 

• New weights: 𝒘𝑷 𝑢, 𝑣 = 𝑢 − 𝑣
2
+ 𝝐𝚫𝑷 𝑢, 𝑣  

 
𝑢 − 𝑣

2
≤ 𝔼𝑷,𝒘𝑷 𝑢, 𝑣 - ≤ 1 + 𝑂 𝝐𝒍𝒅 𝑢 − 𝑣

2
 

 
• Our algorithm implements Kruskal for weights 𝒘𝑷 

𝑢 𝑣 

𝚫𝑷 𝑢, 𝑣  



“Solve-And-Sketch” Framework 

(1 + 𝜖)-MST: 

– “Load balancing”: partition the tree into parts of 
the same size 

– Almost linear time locally: Approximate Nearest 
Neighbor data structure *Indyk’99] 

– Dependence on dimension d (size of 𝝐-net is 

𝑂
𝒅

𝝐

𝒅
) 

– Generalizes to bounded doubling dimension 

– Implementation in MapReduce 

 

 

 
 

 



“Solve-And-Sketch” Framework 

(1 + 𝜖)-Earth-Mover Distance, Transportation Cost 

• No simple “divide-and-conquer” Arora-Mitchell-style 
algorithm (unlike for general matching) 

• Only recently sequential 1 + 𝜖 -apprxoimation in  

𝑂𝜖 𝒏 log
𝑂 1 𝒏 time [Sharathkumar, Agarwal ‘12] 

Our approach (convex sketching): 

• Switch to the flow-based version 

• In every cell, send the flow to the closest net-point 
until we can connect the net points 

 



“Solve-And-Sketch” Framework 

Convex sketching the cost function for 𝝉 net 
points 

• 𝐹:ℝ𝝉−1 → ℝ = the cost of routing fixed 
amounts of flow through the net points 

• Function 𝐹’ = 𝐹 + “normalization” is 
monotone, convex and Lipschitz, (1 + 𝝐)-
approximates 𝐹 

• We can (1 + 𝝐)-sketch it using a lower convex 
hull 



Thank you! http://grigory.us 

Open problems: 

• Exetension to high dimensions? 
– Probably no, reduce from connectivity => conditional 

lower bound ∶  Ω log 𝑛  rounds for MST in ℓ∞
𝑛  

– The difficult setting is 𝑑 = Θ(log𝒏) (can do JL) 

• Streaming alg for EMD and Transporation Cost? 

• Our work:  
– First near-linear time algorithm for Transportation 

Cost 

– Is it possible to reconstruct the solution itself? 

 

http://grigory.us/


Class Project 
• Survey of 3-5 research papers 

– Closely related to the topics of the class 
• Streaming 
• MapReduce  
• Convex Optmization 
• Sublinear Time Algorithms 

– Office hours if you need suggestions 
– Individual or groups of 2 people 
– Deadline: December 18, 2015 at 23:59 EST 

• Submission by e-mail grigory@grigory.us 
– Submission Email Title: Project + Space + “Your Name” 
– One submission per group listing participants 
– Submission format 

• PDF from LaTeX (best) 
• PDF 

 

 
 

mailto:grigory@grigory.us


Example: Gradient Descent in 
TensorFlow 

• Gradient Descent (covered in class) 
• Adagrad: 

http://www.magicbroom.info/Papers/DuchiHaSi10.pdf 
• Momentum (stochastic gradient descent + tweaks): 

http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf 
• Adam (Adaptive + momentum): 

http://arxiv.org/pdf/1412.6980.pdf 
• FTRL: 

http://jmlr.org/proceedings/papers/v15/mcmahan11b/mc
mahan11b.pdf 

• RMSProp: 
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_
slides_lec6.pdf 
 

http://www.magicbroom.info/Papers/DuchiHaSi10.pdf
http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf
http://arxiv.org/pdf/1412.6980.pdf
http://jmlr.org/proceedings/papers/v15/mcmahan11b/mcmahan11b.pdf
http://jmlr.org/proceedings/papers/v15/mcmahan11b/mcmahan11b.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf


K-means Clustering 

• Given X = *𝑥1, … , 𝑥𝑛+ ∈ ℝ
𝑑  find a set of centers 

𝐶 = (𝑐1, … , 𝑐𝑘) that minimizes 

 min
𝑖∈,𝑘-

𝑥 − 𝑐𝑖
2

𝑥∈𝑋

 

• NP-hard problem 
• Popular heuristic local search (Lloyd’s alg.) 
• For a fixed partitioning 𝑃1, … , 𝑃𝑘: 

𝑐𝑗 =
1

𝑃𝑗
⋅  𝑥𝑖
𝑖∈𝑃𝑗

 

 



Dimension reduction for K-means 

• Let 𝑐𝑜𝑠𝑡𝑃 𝑋 = inf𝑐 𝑐𝑜𝑠𝑡𝑃,𝑐(𝑋) 

• For 0 < 𝜖 <
1

2
 let 𝑓: 𝑋 → ℝ𝑛 be such that  

∀𝑖, 𝑗: 1 − 𝜖 𝑥𝑖 − 𝑥𝑗
2

2
≤ 𝑓 𝑥𝑖 − 𝑓 𝑥𝑗  

2

2
≤ 1 + 𝜖 𝑥𝑖 − 𝑥𝑗

2

2
 

• 𝑃  is a 𝛾-approx. clustering for 𝑓 𝑋  

• 𝑃∗ is an optimal clustering for 𝑋 

• Lemma. 

𝑐𝑜𝑠𝑡𝑃 ≤ 𝛾
1 + 𝜖

1 − 𝜖 
𝑐𝑜𝑠𝑡𝑃∗(𝑋) 



Dimension reduction for K-means 

• Let 𝑐𝑜𝑠𝑡𝑃 𝑋 = inf𝑐 𝑐𝑜𝑠𝑡𝑃,𝑐(𝑋) 

• For 0 < 𝜖 <
1

2
 let 𝑓: 𝑋 → ℝ𝑑

′
 be such that  

∀𝑖, 𝑗: 1 − 𝜖 𝑥𝑖 − 𝑥𝑗
2

2
≤ 𝑓 𝑥𝑖 − 𝑓 𝑥𝑗  

2

2
≤ 1 + 𝜖 𝑥𝑖 − 𝑥𝑗

2

2
 

• 𝑃  is a 𝛾-approx. clustering for 𝑓 𝑋  

• 𝑃∗ is an optimal clustering for 𝑋 

• Lemma. 

𝑐𝑜𝑠𝑡𝑃 ≤ 𝛾
1 + 𝜖

1 − 𝜖 
𝑐𝑜𝑠𝑡𝑃∗(𝑋) 

• 𝑑′ = 𝑂 log
𝑛

𝜖2
 suffices by the JL-lemma 



Dimension reduction for K-means 

• Fix a partition 𝑃 = 𝑃1, … , 𝑃𝑘  

𝑐𝑜𝑠𝑡𝑃 𝑋 =   𝑥𝑖 −
1

𝑃𝑗
 𝑥𝑖′

𝑖′∈𝑃𝑗 
2

2

𝑖∈𝑃𝑗𝑗∈,𝑘-

 

=  
1

𝑃𝑗
  𝑥𝑖 2

2
− 2 𝑥𝑖 ,  𝑥𝑖

′

𝑖′∈ P𝑗

+

𝑖′∈𝑃𝑗

 𝑥𝑖
′

𝑖′∈ P𝑗
2

2

𝑖∈𝑃𝑗𝑗∈,𝑘-

 

=   
1

𝑃𝑗
  

𝑥𝑖 2
2
+ 𝑥𝑖

′
2

2

2
− 𝑥𝑖 , 𝑥𝑖′

𝑖′∈𝑃𝑗𝑖∈𝑃𝑗

 

𝑗∈,𝑘-

 

 
1

2 𝑃𝑗
  𝑥𝑖 − 𝑥𝑖′ 2

2
 

𝑖′∈𝑃𝑗𝑖∈𝑃𝑗

 

𝑗∈,𝑘-

 

• 1 − 𝜖 𝑐𝑜𝑠𝑡𝑃 𝑋 ≤ 𝑐𝑜𝑠𝑡𝑃 𝑓 𝑋 ≤ 1 + 𝜖 𝑐𝑜𝑠𝑡𝑃(𝑋) 

• 1 − 𝜖 𝑐𝑜𝑠𝑡𝑃 𝑋 ≤ 𝑐𝑜𝑠𝑡𝑃 𝑓 𝑋 ≤ 𝛾 𝑐𝑜𝑠𝑡𝑃∗ 𝑓 𝑋 ≤ 𝛾 𝑐𝑜𝑠𝑡𝑃∗ 𝑋  
   
 



K-means++ Algorithm 

• First center uniformly at random from 𝑋 

• For a set of centers 𝐶 let: 

𝑑2 𝑥, 𝐶 = min
𝑐∈𝐶
 𝑥 − 𝑐

2

2
 

• Fix current set of centers 𝐶 

• Subsequent centers: each 𝑥𝑖 with prob. 
𝑑2(𝑥𝑖 , 𝐶)

 𝑑2(𝑥𝑗 , 𝐶)𝑥𝑗∈𝑋

 

• Gives 𝑂 log 𝑘 -approx. to OPT in expectation 



K-means∥ Algorithm 

• First center 𝐶: sample a point uniformly 
• Initial cost 𝜓 =  𝑑2(𝑥, 𝐶)𝑥  
• For 𝑂(log𝜓) times do: 

– Repeat ℓ times (in parallel) 
• 𝐶′ = sample each 𝑥𝑖 ∈ 𝑋 indep. with prob. 

𝑝𝑥 =
𝑑2(𝑥𝑖 , 𝐶)

 𝑑2(𝑥𝑗 , 𝐶)𝑥𝑗∈𝑋

 

• 𝐶 ← 𝐶 ∪ 𝐶′ 

• For 𝑥 ∈ 𝐶:  
𝑤𝑥 = the #points belonging to this center 

• Cluster the weighted points in 𝐶 into 𝑘 clusters 
 



K-means∥ Algorithm 

• Oversampling factor ℓ = Θ 𝑘  

• #points in 𝐶: ℓ log𝜓 

• Thm. If 𝛼-approx. used in the last step then 𝑘-
means∥ obtains an 𝑂 𝛼 -approx. to k-means 

• If Ψ and Ψ′ are the costs of clustering before 
and after one outer loop iteration then: 

𝐸 Ψ′ = 𝑂 𝑂𝑃𝑇 +
𝑘

𝑒ℓ
Ψ 

 

 



K-means∥ Analysis 

• For a set of points 𝐴 = *𝑎1, … , 𝑎𝑡+ centroid 𝑐𝐴: 

𝑐𝐴 =
1

𝑇
 𝑎𝑡 

• Order 𝑎1, … , 𝑎𝑇 in the increasing order by distance from 𝑐𝐴 
• Fix a cluster 𝐴 in OPT 
• Fix 𝐶 prior to the iteration and let: 

𝜙 𝐶 = 𝑑2(𝑥, 𝐶)

𝑥

 

𝜙𝐴 𝐶 = 𝑑2(𝑎, 𝐶)

𝑎

 

• Let 𝑝𝑡 =
𝑑2(𝑎𝑡,𝐶)

𝜙(𝐶)
 be the probability of selecting 𝑎𝑡 

• Probability that 𝑎𝑡 is the smallest one chosen: 

𝑞𝑡 = 𝑝𝑡 (1− 𝑝𝑗)

𝑡−1

𝑗=1

 



K-means∥ Analysis 

• Can either assign all points to some selected 
𝑎𝑡 or keep the original clustering: 

𝑠𝑡 = min 𝜙𝐴, 𝑎 − 𝑎𝑡
2

𝑎∈𝐴

 

• 𝐸 𝜙𝐴 𝐶 ∪ 𝐶
′ ≤  𝑞𝑡𝑠𝑡 + 𝑞𝑇+1𝑡 𝜙𝐴 𝐶  

where 𝑞𝑇+1= prob. that no point in 𝐴 is selected 

• Simplifying assumption: consider the case 
when all 𝑝𝑡 = 𝑝 (mean field analysis) 

• 𝑞𝑡 = 𝑝 1 − 𝑝
𝑡 (decreasing sequence) 



K-means∥ Analysis 

• 𝑠𝑡
′ =  𝑎 − 𝑎𝑡

2
𝑎∈𝐴  

• 𝑠𝑡
′  is an increasing sequence 

 𝑞𝑡𝑠𝑡 ≤ 𝑞𝑡𝑠𝑡
′

𝑡𝑡

 

≤
1

𝑇
 𝑞𝑡
𝑡

 𝑠𝑡
′

𝑡

 

=  𝑞𝑡
𝑡

⋅
1

𝑇
 𝑠𝑡

′

𝑡

 

=  𝑞𝑡
𝑡

⋅ 2 𝜙𝐴
∗  

• 𝐸 𝜙𝐴 𝐶 ∪ 𝐶
′ ≤ (1 − 𝑞𝑇+1 ) 2 𝜙𝐴

∗+ 𝑞𝑇+1 𝜙𝐴(𝐶) 
 


