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Compressed Sensing 

• Given a sparse signal 𝑥 ∈ ℝ𝑛 can we recover it 
from a small number of measurements? 

• Goal: design 𝐴 ∈ ℝ𝑑×𝑛 which allows to 
recover any 𝑠-sparse 𝑥 ∈ ℝ𝑛 from 𝐴𝑥. 

• 𝐴 = matrix of i.i.d. Gaussians 𝑁(0,1) 

• Application: signals are usually sparse in some 
Fourier domain 

 



Reconstruction 

• Reconstruction:  

min 𝑥
0

, subject to: 𝐴𝑥 = 𝑏 

• Uniqueness: If there are two 𝑠-sparse solutions 𝑥1, 𝑥2: 
𝐴 𝑥1 − 𝑥2 = 0 

then 𝐴 has 2𝑠 linearly dependent columns 

• If 𝑑 = Ω(𝑠2) and 𝐴 is Gaussian then unlikely to have 
linearly dependent columns 

• 𝑥
0

not convex, NP-hard to reconstruct 

• 𝑥
0
→ 𝑥

1
:  min 𝑥

1
, subject to: 𝐴𝑥 = 𝑏 

• When does this give sparse solutions? 

 



Subgradient 

• min 𝑥
1

, subject to: 𝐴𝑥 = 𝑏 

• 𝑥
1

is convex but not differentiable 

• Subgradient 𝛻f: 
– equal to gradient where 𝑓 is differentiable 
– any linear lower bound where 𝑓 is not differentiable 

∀𝑥0, Δ𝑥:  𝑓 𝑥0 + Δ𝑥 ≥ 𝑓 𝑥0 + 𝛻𝑓
𝑇Δ𝑥 

• Subgradient for 𝑥
1
: 

– 𝛻 𝑥
1 𝑖
= 𝑠𝑖𝑔𝑛(𝑥𝑖) if 𝑥𝑖 ≠ 0 

– 𝛻 𝑥
1 𝑖
∈ −1,1  if 𝑥𝑖 = 0 

• For all Δ𝑥 such that 𝐴Δ𝑥 = 0 satisfies 𝛻𝑇Δ𝑥 ≥ 0 

• Sufficient: ∃𝑤 such that 𝛻 = 𝐴𝑇𝑤 so 𝛻𝑇Δ𝑥 = 𝑤𝐴Δ𝑥 = 0  



Exact Reconstruction Property 

• Subgradient Thm. If 𝐴𝑥0 = 𝑏 and there exists a 
subgradient 𝛻 for 𝑥

1
such that 𝛻 = 𝐴𝑇𝑤 and 

columns of 𝐴 corresponding to 𝑥0 are linearly 
independent then 𝑥0 minimizes 𝑥

1
and is unique. 

• (Minimum): Assume 𝐴𝑦 = 𝑏. Will show  

𝑦
1
≥ 𝑥0 1

 

• 𝑧 = 𝑦 − 𝑥0 ⇒ 𝐴𝑧 = 𝐴𝑦 − 𝐴𝑥0 = 0 

• 𝛻𝑇𝑧 = 0 ⇒ 
𝑦
1
= 𝑥0 + 𝑧 ≥ 𝑥0 + 𝛻

𝑇𝑧 = 𝑥0 1
 



Exact Reconstruction Property 

• (Uniqueness): assume 𝑥 0 is another minimum 
• 𝛻 at 𝑥0 is also a subgradient at 𝑥 0 
• ∀Δ𝑥: 𝐴Δ𝑥 = 0: 

𝑥 0 + Δ𝑥 1
= 𝑥0 + 𝑥 0 − 𝑥0 + Δ𝑥  

≥ 𝑥0 1
+ 𝛻𝑇(𝑥 0 − 𝑥0 + Δ𝑥) 

= 𝑥0 1
+ 𝛻𝑇 𝑥0  − 𝑥0 + 𝛻

TΔ𝑥 

• 𝛻𝑇 𝑥0  − 𝑥0 = 𝑤
𝑇𝐴 𝑥0  − 𝑥0 = 𝑤

𝑇 𝑏 − 𝑏 = 0 

• 𝑥 0 + Δ𝑥 1
≥ 𝑥0 1

+ 𝛻TΔ𝑥 

• 𝛻 i = sign (x0 i) = sign (𝑥 0 i) if either is non-zero, 
otherwise equal to 0  

• ⇒ 𝑥0 and 𝑥 0 have same sparsity pattern 

• By linear independence of columns of 𝐴: 𝑥0 = 𝑥0  



Restricted Isometry Property 

• Matrix 𝐴 satisfies restricted isometry property 
(RIP), if for any 𝑠-sparse 𝑥 there exists 𝛿𝑠: 

1 − 𝛿𝑠 𝑥
2

2
≤ 𝐴𝑥

2

2
≤ 1 + 𝛿𝑠 𝑥

2

2
 

• Exact isometry: 
– all eigenvalues are ±1 
– for orthogonal 𝑥, 𝑦: 𝑥𝑇𝐴𝑇𝐴𝑦 = 0 

• Let 𝐴𝑆 be the set of columns of 𝐴 in set 𝑆  

• Lem: If 𝐴 satisfies RIP and 𝛿𝑠1+𝑠2 ≤ 𝛿𝑠1 + 𝛿𝑠2: 
– For 𝑆 of size 𝑠 singular values of 𝐴𝑆 in [1 − 𝛿𝑠, 1 + 𝛿𝑠 ] 
– For any orthogonal 𝑥, 𝑦 with supports of size 𝑠1, 𝑠2: 

𝑥𝑇𝐴𝑇𝐴𝑦 ≤ 𝑥 | 𝑦 |(𝛿𝑠1 + 𝛿𝑠2) 



Restricted Isometry Property 

• Lem: If 𝐴 satisfies RIP and 𝛿𝑠1+𝑠2 ≤ 𝛿𝑠1 + 𝛿𝑠2: 
– For 𝑆 of size 𝑠 singular values of 𝐴𝑆 in [1 − 𝛿𝑠, 1 + 𝛿𝑠 ] 
– For any orthogonal 𝑥, 𝑦 with supports of size 𝑠1, 𝑠2: 

𝑥𝑇𝐴𝑇𝐴𝑦 ≤ 3/2 𝑥 𝑦 (𝛿𝑠1 + 𝛿𝑠2) 

• W.l.o.g 𝑥 = 𝑦 = 1 so 𝑥 + 𝑦
2
= 2 

2 1 − 𝛿𝑠1+𝑠2 ≤ 𝐴 𝑥 + 𝑦
2
≤  2 1 + 𝛿𝑠1+𝑠2  

2 1 − 𝛿𝑠1 + 𝛿𝑠2 ≤ 𝐴 𝑥 + 𝑦
2
≤  2 1 + 𝛿𝑠1 + 𝛿𝑠2  

• 1 − 𝛿𝑠1 ≤ 𝐴𝑥
2
≤ (1 + 𝛿𝑠1) 

• 1 − 𝛿𝑠2 ≤ 𝐴𝑦
2
≤ (1 + 𝛿𝑠2) 

 



Restricted Isometry Property 

• 2𝑥𝑇𝐴𝑇𝐴𝑦 
= 𝑥 + 𝑦 𝑇 𝐴𝑇𝐴 𝑥 + 𝑦 − 𝑥𝑇𝐴𝑇𝐴𝑥 − 𝑦𝑇𝐴𝑇𝐴𝑦 

= 𝐴 𝑥 + 𝑦
2
− 𝐴𝑥

2
− 𝐴𝑦

2
 

• 2𝑥𝑇𝐴𝑇𝐴𝑦 ≤ 2 1 + 𝛿𝑠1 + 𝛿𝑠2 − 

1 − 𝛿𝑠1 − 1 − 𝛿𝑠2 = 3(𝛿𝑠1 + 𝛿𝑠2) 

• 𝑥𝑇𝐴𝑇𝐴𝑦 ≤
3

2
𝑥 ⋅ 𝑦 ⋅ (𝛿𝑠1 + 𝛿𝑠2) 



Reconstruction from RIP 

• Thm. If 𝐴 satisfies RIP with 𝛿𝑠+1 ≤
1

10 𝑠
 and 𝑥0 is 

𝑠-sparse and satisfies 𝐴𝑥0 = 𝑏. Then a 𝛻( ⋅
1
) 

exists at 𝑥0 which satisfies conditions of the 
“subgradient theorem”. 

• Implies that 𝑥0 is the unique minimum 1-norm 
solution to 𝐴𝑥 = 𝑏. 

• 𝑆 = 𝑖 𝑥0 𝑖 ≠ 0 , 𝑆 = 𝑖 𝑥0 𝑖 = 0  
• Find subgradient 𝑢 search for 𝑤: 𝑢 = 𝐴𝑇𝑤 

– for 𝑖 ∈ 𝑆: 𝑢𝑖 = 𝑠𝑖𝑔𝑛 𝑥0  
– 2-norm of the coordinates in 𝑆  is minimized 



Reconstruction from RIP 

• Let 𝑧 be a vector with support 𝑆: 
𝑧𝑖 =sign (𝑥0 𝑖) 

• Let 𝑤 = 𝐴𝑆 𝐴𝑆
𝑇𝐴𝑆

−1
𝑧 

• 𝐴𝑆 has independent columns by RIP 
• For coordinates in 𝑆: 

𝐴𝑇𝑤 𝑆 = 𝐴𝑆
𝑇𝐴𝑆 𝐴𝑆

𝑇𝐴𝑆
−1
𝑧 = 𝑧 

• For coordinates in 𝑆 : 

𝐴𝑇𝑤 𝑆 = 𝐴𝑆 
𝑇𝐴𝑆 𝐴𝑆

𝑇𝐴𝑆
−1
𝑧 

• Eigenvalues of 𝐴𝑆
𝑇𝐴𝑆 are in 1 − 𝛿𝑠

2, 1 + 𝛿𝑠
2  

• || 𝐴𝑆
𝑇𝐴𝑆

−1
|| ≤

1

1−𝛿𝑠
2,  let 𝑝 = 𝐴𝑆

𝑇𝐴𝑆
−1
𝑧, 𝑝 ≤

𝑠

1−𝛿𝑠
2 

• 𝐴𝑆𝑝 = 𝐴𝑞 where 𝑞 has all coordinates in 𝑆  equal 0 

• For 𝑗 ∈ 𝑆 : 𝐴𝑇𝑤 𝑗 = 𝑒𝑗
𝑇𝐴𝑇𝐴𝑞 so | 𝐴𝑇𝑤 𝑗| ≤

3

2
𝛿𝑠+𝛿1 𝑠

1−𝛿𝑠
2 ≤

3

2
𝛿𝑠+1 𝑠

1−𝛿𝑠
2 ≤

1

2
 

 


