CIS 700:
 "algorithms for Big Data" Lecture 9: Compressed Sensing

Slides at http://grigory.us/big-data-class.htm|

Grigory Yaroslavtsev

http://grigory.us

Compressed Sensing

- Given a sparse signal $x \in \mathbb{R}^{n}$ can we recover it from a small number of measurements?
- Goal: design $A \in \mathbb{R}^{d \times n}$ which allows to recover any s-sparse $x \in \mathbb{R}^{n}$ from $A x$.
- $A=$ matrix of i.i.d. Gaussians $N(0,1)$
- Application: signals are usually sparse in some Fourier domain

Reconstruction

- Reconstruction:

$$
\min ||x||_{0}, \text { subject to: } A x=b
$$

- Uniqueness: If there are two s-sparse solutions x_{1}, x_{2} :

$$
A\left(x_{1}-x_{2}\right)=0
$$

then A has $2 s$ linearly dependent columns

- If $d=\Omega\left(s^{2}\right)$ and A is Gaussian then unlikely to have linearly dependent columns
- $\left||x|_{0}\right.$ not convex, NP-hard to reconstruct
- $\left\|\left.x\right|_{0} \rightarrow| | x\right\|_{1}: \min | | x| |_{1}$, subject to: $A x=b$
- When does this give sparse solutions?

Subgradient

- $\min ||x||_{1}$, subject to: $A x=b$
- $\left|\mid x \|_{1}\right.$ is convex but not differentiable
- Subgradient $\nabla \mathrm{f}$:
- equal to gradient where f is differentiable
- any linear lower bound where f is not differentiable

$$
\forall x_{0}, \Delta x: f\left(x_{0}+\Delta x\right) \geq f\left(x_{0}\right)+(\nabla f)^{T} \Delta x
$$

- Subgradient for $\left||x|_{1}\right.$:

$$
\begin{aligned}
& -\nabla\left(\left.| | x\right|_{1}\right)_{i}=\operatorname{sign}\left(x_{i}\right) \text { if } x_{i} \neq 0 \\
& -\nabla\left(\left.|x|\right|_{1}\right)_{i} \in[-1,1] \text { if } x_{i}=0
\end{aligned}
$$

- For all Δx such that $A \Delta x=0$ satisfies $\nabla^{T} \Delta x \geq 0$
- Sufficient: $\exists w$ such that $\nabla=A^{T} w$ so $\nabla^{T} \Delta x=w A \Delta x=0$

Exact Reconstruction Property

- Subgradient Thm. If $A x_{0}=b$ and there exists a subgradient ∇ for $\left|\mid x \|_{1}\right.$ such that $\nabla=A^{T} w$ and columns of A corresponding to x_{0} are linearly independent then x_{0} minimizes $\left||x|_{1}\right.$ and is unique.
- (Minimum): Assume $A y=b$. Will show

$$
\left|\left|y\left\|_{1} \geq| | x_{0}\right\|_{1}\right.\right.
$$

- $z=y-x_{0} \Rightarrow A z=A y-A x_{0}=0$
- $\nabla^{T} Z=0 \Rightarrow$

$$
\left||y|\left\|_{1}=\left|\left|x_{0}+z\right|\right| \geq\left|\left|x_{0}\right|\right|+\nabla^{T} z=| | x_{0}\right\|_{1}\right.
$$

Exact Reconstruction Property

- (Uniqueness): assume \tilde{x}_{0} is another minimum
- ∇ at x_{0} is also a subgradient at \tilde{x}_{0}
- $\forall \Delta x: A \Delta x=0$:
- $\nabla^{T}\left(\widetilde{x_{0}}-x_{0}\right)=w^{T} A\left(\widetilde{x_{0}}-x_{0}\right)=w^{T}(b-b)=0$
- $\left|\left|\tilde{x}_{0}+\Delta x\left\|_{1} \geq| | x_{0}\right\|_{1}+\nabla^{\mathrm{T}} \Delta x\right.\right.$
- $(\nabla)_{\mathrm{i}}=\operatorname{sign}\left(\left(\mathrm{x}_{0}\right)_{\mathrm{i}}\right)=\operatorname{sign}\left(\left(\tilde{x}_{0}\right)_{\mathrm{i}}\right)$ if either is non-zero, otherwise equal to 0
- $\Rightarrow x_{0}$ and \tilde{x}_{0} have same sparsity pattern
- By linear independence of columns of $A: x_{0}=\widetilde{x_{0}}$

Restricted Isometry Property

- Matrix A satisfies restricted isometry property (RIP), if for any s-sparse x there exists δ_{s} :

$$
\left(1-\delta_{s}\right)||x||_{2}^{2} \leq||A x||_{2}^{2} \leq\left(1+\delta_{s}\right)| | x| |_{2}^{2}
$$

- Exact isometry:
- all eigenvalues are ± 1
- for orthogonal $x, y: x^{T} A^{T} A y=0$
- Let A_{S} be the set of columns of A in set S
- Lem: If A satisfies RIP and $\delta_{s_{1}+s_{2}} \leq \delta_{s_{1}}+\delta_{s_{2}}$:
- For S of size s singular values of A_{S} in $\left[1-\delta_{s}, 1+\delta_{s}\right.$]
- For any orthogonal x, y with supports of size s_{1}, s_{2} :

$$
\left|x^{T} A^{T} A y\right| \leq\|x| |\| y \|\left(\delta_{s_{1}}+\delta_{s_{2}}\right)
$$

Restricted Isometry Property

- Lem: If A satisfies RIP and $\delta_{s_{1}+s_{2}} \leq \delta_{s_{1}}+\delta_{S_{2}}$:
- For S of size s singular values of A_{S} in $\left[1-\delta_{s}, 1+\delta_{s}\right.$]
- For any orthogonal x, y with supports of size s_{1}, s_{2} :

$$
\left|x^{T} A^{T} A y\right| \leq 3 / 2| | x| || | y| |\left(\delta_{s_{1}}+\delta_{s_{2}}\right)
$$

- W.I.o.g $||x||=||y||=1$ so $||x+y||^{2}=2$
- $\left(1-\delta_{s_{1}}\right) \leq||A x||^{2} \leq\left(1+\delta_{s_{1}}\right)$
- $\left(1-\delta_{s_{2}}\right) \leq\|A y\|^{2} \leq\left(1+\delta_{s_{2}}\right)$

Restricted Isometry Property

- $2 x^{T} A^{T} A y$
$=(x+y)^{T} A^{T} A(x+y)-x^{T} A^{T} A x-y^{T} A^{T} A y$

- $2 x^{T} A^{T} A y \leq 2\left(1+\left(\delta_{s_{1}}+\delta_{s_{2}}\right)\right)-$
$\left(1-\delta_{s_{1}}\right)-\left(1-\delta_{S_{2}}\right)=3\left(\delta_{s_{1}}+\delta_{s_{2}}\right)$
- $x^{T} A^{T} A y \leq \frac{3}{2}| | x| | \cdot| | y| | \cdot\left(\delta_{s_{1}}+\delta_{s_{2}}\right)$

Reconstruction from RIP

- Thm. If A satisfies RIP with $\delta_{s+1} \leq \frac{1}{10 \sqrt{s}}$ and x_{0} is s-sparse and satisfies $A x_{0}=b$. Then a $\nabla\left(\left||\cdot| \|_{1}\right)\right.$ exists at x_{0} which satisfies conditions of the "subgradient theorem".
- Implies that x_{0} is the unique minimum 1 -norm solution to $A x=b$.
- $S=\left\{i \mid\left(x_{0}\right)_{i} \neq 0\right\}, \bar{S}=\left\{i \mid\left(x_{0}\right)_{i}=0\right\}$
- Find subgradient u search for $w: u=A^{T} w$
- for $i \in S: u_{i}=\operatorname{sign}\left(x_{0}\right)$
- 2 -norm of the coordinates in \bar{S} is minimized

Reconstruction from RIP

- Let z be a vector with support S :

$$
z_{i}=\operatorname{sign}\left(\left(x_{0}\right)_{i}\right)
$$

- Let $w=A_{S}\left(A_{S}^{T} A_{S}\right)^{-1}{ }_{z}$
- A_{S} has independent columns by RIP
- For coordinates in S :

$$
\left(A^{T} w\right)_{S}=A_{S}^{T} A_{S}\left(A_{S}^{T} A_{S}\right)^{-1}{ }_{z}=z
$$

- For coordinates in \bar{S} :

$$
\left(A^{T} w\right)_{\bar{S}}=A_{\bar{S}}^{T} A_{S}\left(A_{S}^{T} A_{S}\right)^{-1}{ }_{Z}
$$

- Eigenvalues of $A_{S}^{T} A_{S}$ are in $\left[\left(1-\delta_{S}\right)^{2},\left(1+\delta_{S}\right)^{2}\right]$
- $\left\|\left(A_{S}^{T} A_{S}\right)^{-1}\right\| \leq \frac{1}{\left(1-\delta_{S}\right)^{2}}$, let $p=\left(A_{S}^{T} A_{S}\right)^{-1} z,\|p\| \leq \frac{\sqrt{s}}{\left(1-\delta_{S}\right)^{2}}$
- $A_{S} p=A q$ where q has all coordinates in \bar{S} equal 0
- For $j \in \bar{S}:\left(A^{T} w\right)_{j}=e_{j}^{T} A^{T} A q$ so $\left|\left(A^{T} w\right)_{j}\right| \leq \frac{\frac{3}{2}\left(\delta_{s}+\delta_{1}\right) \sqrt{s}}{\left(1-\delta_{s}\right)^{2}} \leq \frac{\frac{3}{2}\left(\delta_{s+1}\right) \sqrt{s}}{\left(1-\delta_{s}\right)^{2}} \leq \frac{1}{2}$

