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Least Squares Regression

Solving an overconstrained linear system

For d < n given:

— matrix A € R™x4
—vector b € R"

Find x* € R? that minimizes: HAx — bl‘2
Normal equation: ATAx* = A"bh
If A has rank d then x* = (ATA)"'ATh

Takes O(nd?) time to compute (using naive
matrix multiplication)



Sketching for Least Squares Regression

d
€2

Use JL matrix § € R"*" where r = @( ) Kn

Solve minHSAx — Sb||2 instead
X

Standard JL: time O(nrd + rd?) > 0(nd?)
Sparse JL: time 0(nd? /e + rd*)

Fast JL: time O(nd logn + rd?#)

Subspace embeddings from JL:

— JL only gives a guarantee for a fixed vector

— We need the guarantee for the column space of A



Oblivious Subspace Embeddings

* Subspace embedding for A:
2 2
ISAx||, = (1 £ &)|lAx]]

e SE for A = SE for U where U is the orthonormal basis for the
column space of A

e Least Squares Regression: use SE for (A,b)

min“Ax —bl‘2 —>minHSAx —Sbl‘2 =minHS(Ax —b)I‘2
X X X

* Oblivious Subspace Embedding (OSE): matrix S
chosen independently of 4, works for any fixed A
* JL transforms can be used as oblivious subspace embeddings



IT(e, 8, F)

ILT(g, 8, f): S € R*¥*™ that for any f-element subset
IV € R™ forall v, v’ € V satisfies that:

(Sv, Sv') — (v, v')]| < E“UHZHV'”Z

For unit vectors v, v':
[(Sv,5v") — (v, v')| <€
(Sv,Sv') =

1
~(Is@ + w011, = lisvIl; = s[lv'1];)
1
~H{azolv+vIF - atolwl-a o)

= (v,v') + 0(¢)
Suffices to take regular JL of dimension d = Q(1/e%log f/6)



OSE construction

e S={yeR*3Ix: y =Ax,“y||2 =1}

* e-net argument: find a set N € S such that if
(Sw,Sw')=(w,w')+e Vww eN

then |ISyl|> = (L £ )|Iyl|; vy €S
* N =1/2-net:

1
VyESEIWeN:Hy—W <§

1
i

‘ y=y°+y1+y2+---,where“y' < —and each y*

is @ multiple of a vector in N.



* Yy = y+y +y+ , Where

Net argument

— and each y'is a

multiple of a vector in N

1
* ="+ @ —y")whereyo €N, [ly —¥°|l2 <

2.

0<i<j<o

<0Si<j<oo

=14 0(e)

INA

c (y—yH =91 +((y {0) y1) where y! ENand
(=% - yl)l\ <

c [IsyllS = 1SG° +y* +¥2 +-):

< 1/4

2

2 ) )
I+ 2(Syh Sy’)
2

2 ..
t 2(y J”)) * 2¢€( Z

0<i<j<oo



%5 -Net construction

d
For 0 <y < 1thereisay-netforS$ of size < (1 + %)

Choose a maximal set N’ of points on S¢ such that no
two points are within y of each other

Y
2
Ball of radius 1 + % around the origin contains all balls

. 147 ’ 2\ 4
# points < | 5= =(1+;)

Balls of radius = around the points are disjoint

2
Size of %-net < 5%

JLT of dimension Q((d + log %)/62) gives OSE



OSE constructions Running Times

nnz(A) = # non-zero entries in A
* OSE from Sparse JL: time O(nnz(A)d/e€)
* FastJL: time O(ndlogn)

e [Clarkson, Woodruff’13] possible to construct
OSE in time O(nnz(A))



Leverage Score Sampling

Def (Leverage Score): For an n X k matrix Z with

orthonormal columns let the leverage score
4 2 T | 2
p; = ?Where 07 = “ei Z ‘2 = “Zi”z

Note: leverage scores form a distribution

If A doesn’t have orthonormal columns we can
still pick an orthonormal basis Z for it

Choice of Z doesn’t matter (Z' = ZR) where R is
orthonormal gives same leverage scores

All £7 are at most 1



Leverage Score Sampling

* Given: f > 0 distribution (g4, ..., g,) with
q; = pp;

* Leverage Score Sampling (Z,s,q):
— Constructs matrices ) € R"S and D € R5*S

— For each column indep. with replacement pick
row [ W.p. q;

— Set ‘Q‘i,j = 1 and D]] = 1/\/qi5



LSS as a Subspace Embedding

e Thm.: If Z € R™* has orthonormal columns then for

s > 144k log (%) /Be? if Qand D are constructed via
LSS(Z, s, q) thenforall i w.p. 1 — §:

l1-e<o’(DTQATZ)<1+¢€

* (Matrix Chernoff): If X;, ... X are i.i.d copies of a
symmetric random matrix X € R**¥ with E[X] =

O,HXI‘2 < y and HE[XTX]I‘2 < s? then for
w =% >_1X;and e > 0:

Pr“IWH >E]<2kexp — se”
’ B 252+%




Proof: LSS as a Subspace Embedding

U; = i-th sampled row of Z in LSS(Z, s, q)
z; = j-th row of Z

X; = I = U/ Ui/q;

n 9% 7 T
ElX;| = I — Xj=1 2 =l — 2" Z = Opxi
T,. 112
Z’;J is a rank-1 matrix with operator norm < ”2”2
J J
Ui U;
|1X:1], < [Tl + m <1+k/B
2

k.
5



Proof: LSS as a Subspace Embedding

.« E[XTX] =1, —2E [” U‘]+E[U Uil U‘]

_\% 44 4
— — I
=
k n
S (E) z ZJTZ]' — Ik
=1

IELXTXTI], < (5 -1)

¢ Take W =—%5.,X; = I, —Z7QDDTQ’Z

* By Matrix Chernoff fors = 0(k logg/(ﬁez)):
Pr||Il — Z7QDDTQTZ||, > €| < 6



LSS as a Subspace Embedding

» A=Z2VT (SVD of A)
IDTQT Ax||, =

=(1+¢€) ZVTxHZ (all sing. valuesup to 1 + €)
=(1x o)|laxl|, ([IZyl|, = |Iyl],)

* How to compute g in
O(nnz(A) logn + poly(k)) time?




Thin Singular Value Decomposition

A€ R4, U e R™4, X e R4, V e R
A = UX V! (computedin O(n d?)) time

U has orthonormal columns, X is diagonal, V is unitary
vy = vv! =1

X;;i = o0;is the i-th singular value
v; = i-th column of V is the i-th right singular vector:
1avil|, = IV EVTvl|, = ||UEe]] U ]
Moore-Penrose pseudoinverse :

AT =(ATA) AT = vx-1yT
Least squares solution: x* = A*h = VE~1UTD

= 0:
2 l



Approximating Leverage Scores

Thm. A constant-approx. leverage score distribution for

A € R™? can be computed with constant prob. in
O(nnz(A) logn + poly(d)) time

S = sparse embedding matrix with r = 0(d?/y*) rows for
constant y (Count-Sketch matrix)

One non-zero entry per column of S =>SA computed in nnz(A)
time
QR-factorization: QR = SA where Q has orthonormal columns, S

is upper triangular (takes O (r d#)) time using e.g. Gram-
Schmidt

2

q; = “eiTAR_lGH where G € R**t is a matrix of i.i.d
2

N(0,1/t) random variables for t = O (ligzn)

R 1Gin0(k?logn/y?), A(R1G) in O(nnz(A)logn /y?)



Approximating Leverage Scores

FAR- rar|
2
Singular valuesof AR"1 € [1 —y,1 + ]
2 2
|4R x| = (1 £) ||SARx||

=@ +p)lQxl];

2
= (1L p)|lIxI[,
U = AR T = o.n.b. for the column space of A

Singular valuesof T are € [1 — 2y, 1 + 2)/] otherwise “AR 1Tv”
(1 —2y)(1+7) < 1but “AR 1Tv|‘ |Uv|| ~1

TAR l-TUT‘l”Z > (1 -2p)] el-TU”z = (1 - 2y)p;
Thus,q; = (1 —y)(1 —2y)p;




Least Squares Regression

» Dimension O (d?/€?) can be reduced to
0 (i) by using sketch matrix §'' = S'S

62
where S’ is a dense 0SS

* |nstead of using leverage scores we could just
use S'' as 0SS and solve LSR in O(nnz(A) +

poly(d/e)) time
» Skylark: https://github.com/xdata-
skylark/libskylark
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L4-regression

L,-regression is too sensitive to outliers
min||Ax — bl|, = XLy |b; — (Ay,, x)]

No closed-form solution
Best running time by LP in poly(n, d) time
Maximum Likelihood Estimators for noisy data:
— L, = MLE if noise is Gaussian
— L; = MLE if noise is Laplacian
L, subspace embedding:

Vx: HSAle = (1+ (:')“Ax”l

Next time: approximate L; —regression in O(n poly(d))
time.









