# **CIS 700:**

# "algorithms for Big Data"

#### Lecture 7:

# **Sketching for Linear Algebra**

Slides at http://grigory.us/big-data-class.html

#### **Grigory Yaroslavtsev**

http://grigory.us



#### **Least Squares Regression**

- Solving an overconstrained linear system
- For  $d \ll n$  given:
  - matrix  $A \in \mathbb{R}^{n \times d}$
  - vector  $\boldsymbol{b} \in \mathbb{R}^n$
- Find  $\mathbf{x}^* \in \mathbb{R}^d$  that minimizes:  $\left| |A\mathbf{x} \mathbf{b}| \right|_2$
- Normal equation:  $A^T A x^* = A^T b$
- If  $\boldsymbol{A}$  has rank d then  $\boldsymbol{x}^* = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{b}$
- Takes  $O(nd^2)$  time to compute (using naïve matrix multiplication)

#### Sketching for Least Squares Regression

- Use JL matrix  $\mathbf{S} \in \mathbb{R}^{r \times n}$  where  $r = \Theta\left(\frac{d}{\epsilon^2}\right) \ll n$
- Solve  $\min_{x} ||SAx Sb||_{2}$  instead
- Standard JL: time  $O(nrd + rd^2) > O(nd^2)$
- Sparse JL: time  $O(nd^2/\epsilon + rd^2)$
- Fast JL: time  $O(nd \log n + rd^2)$
- Subspace embeddings from JL:
  - JL only gives a guarantee for a fixed vector
  - We need the guarantee for the column space of A

## Oblivious Subspace Embeddings

Subspace embedding for A:

$$\left| \left| SAx \right| \right|_{2}^{2} = (1 \pm \epsilon) \left| \left| Ax \right| \right|_{2}^{2}$$

- SE for  $A \equiv$  SE for U where U is the orthonormal basis for the column space of A
- Least Squares Regression: use SE for (A,b)

$$\min_{x} ||Ax - b||_{2} \rightarrow \min_{x} ||SAx - Sb||_{2} = \min_{x} ||S(Ax - b)||_{2}$$

- Oblivious Subspace Embedding (OSE): matrix S chosen independently of A, works for any fixed A
- JL transforms can be used as oblivious subspace embeddings

# $\mathsf{JLT}(\epsilon, \delta, f)$

• JLT $(\epsilon, \delta, f)$ :  $S \in \mathbb{R}^{k \times n}$  that for any f-element subset  $V \subseteq \mathbb{R}^n$  for all  $v, v' \in V$  satisfies that:

$$|\langle Sv, Sv' \rangle - \langle v, v' \rangle| \le \epsilon ||v||_2 ||v'||_2$$

• For unit vectors v, v':

$$|\langle Sv, Sv' \rangle - \langle v, v' \rangle| \le \epsilon$$

•  $\langle Sv, Sv' \rangle =$ 

$$\frac{1}{2} \left( \left| |S(v+v')| \right|_{2}^{2} - \left| |Sv| \right|_{2}^{2} - S \left| |v'| \right|_{2}^{2} \right) 
= \frac{1}{2} \left( (1 \pm \epsilon) \left| |v+v'| \right|_{2}^{2} - (1 \pm \epsilon) \left| |v| \right|_{2}^{2} - (1 \pm \epsilon) \left| |v'| \right|_{2}^{2} \right) 
= \langle v, v' \rangle \pm O(\epsilon)$$

• Suffices to take regular JL of dimension  $d = \Omega(1/\epsilon^2 \log f/\delta)$ 

#### **OSE** construction

- $S = \{ y \in \mathbb{R}^n | \exists x : y = Ax, ||y||_2 = 1 \}$
- $\epsilon$ -net argument: find a set  $N \subseteq S$  such that if  $\langle Sw, Sw' \rangle = \langle w, w' \rangle \pm \epsilon \quad \forall w, w' \in N$

then 
$$||Sy||_2^2 = (1 \pm \epsilon)||y||_2^2 \ \forall y \in S$$

• N = 1/2-net:

$$\forall y \in S \exists w \in N : \left| |y - w| \right|_2 \le \frac{1}{2}$$

•  $y = y^0 + y^1 + y^2 + \cdots$ , where  $||y^i|| \le \frac{1}{2^i}$  and each  $y^i$  is a multiple of a vector in N.

#### Net argument

- $y = y^0 + y^1 + y^2 + \cdots$ , where  $||y^i|| \le \frac{1}{2^i}$  and each  $y^i$  is a multiple of a vector in N.
- $y = y^0 + (y y^0)$  where  $y_0 \in N$ ,  $||y y^0||_2 \le \frac{1}{2}$
- $(y y^0) = y^1 + ((y y^0) y^1)$  where  $y^1 \in N$  and  $\left| \left| ((y y^0) y^1) \right| \right|_2 \le \frac{\left| |y y^0| \right|}{2} \le 1/4$
- $||Sy||_2^2 = ||S(y^0 + y^1 + y^2 + \cdots)||_2^2$
- $= \sum_{i=1}^{n} \left| \left| \mathbf{S} \mathbf{y}^{i} \right| \right|_{2}^{2} + 2 \langle \mathbf{S} \mathbf{y}^{i}, \mathbf{S} \mathbf{y}^{j} \rangle$

$$\leq \left(\sum_{0\leq i< j<\infty} \left|\left|\mathbf{y}^{i}\right|\right|_{2}^{2} + 2\langle\mathbf{y}^{i},\mathbf{y}^{j}\rangle\right) \pm 2\epsilon \left(\sum_{0\leq i\leq j<\infty} \left|\left|\mathbf{y}^{i}\right|\right|_{2} \left|\left|\mathbf{y}^{j}\right|\right|_{2}\right)$$

$$=1\pm O(\epsilon)$$

#### ½ -Net construction

- For  $0 < \gamma < 1$  there is a  $\gamma$ -net for S of size  $\leq \left(1 + \frac{2}{\gamma}\right)^{\alpha}$
- Choose a maximal set N' of points on  $S^d$  such that no two points are within  $\gamma$  of each other
- Balls of radius  $\frac{\gamma}{2}$  around the points are disjoint
- Ball of radius  $1 + \frac{\gamma}{2}$  around the origin contains all balls

• # points 
$$\leq \left(\frac{1+\frac{\gamma}{2}}{\frac{\gamma}{2}}\right)^d = \left(1+\frac{2}{\gamma}\right)^d$$

- Size of  $\frac{1}{2}$ -net  $\leq 5^d$
- JLT of dimension  $\Omega((d + \log \frac{1}{\delta})/\epsilon^2)$  gives OSE

#### **OSE constructions Running Times**

nnz(A) = # non-zero entries in A

- OSE from Sparse JL: time  $O(nnz(A)d/\epsilon)$
- Fast JL: time  $O(nd \log n)$
- [Clarkson, Woodruff'13] possible to construct OSE in time O(nnz(A))

#### Leverage Score Sampling

• **Def (Leverage Score):** For an  $n \times k$  matrix Z with orthonormal columns let the leverage score

$$p_i = \frac{\ell_i^2}{k}$$
 where  $\ell_i^2 = \left| \left| e_i^T Z \right| \right|_2^2 = \left| \left| Z_i \right| \right|_2^2$ 

- Note: leverage scores form a distribution
- If A doesn't have orthonormal columns we can still pick an orthonormal basis Z for it
- Choice of Z doesn't matter (Z' = ZR) where R is orthonormal gives same leverage scores
- All  $\ell_i^2$  are at most 1

#### Leverage Score Sampling

- Given:  $\beta > 0$  distribution  $(q_1, ..., q_n)$  with  $q_i \ge \beta p_i$
- Leverage Score Sampling (Z, s, q):
  - Constructs matrices  $\Omega \in \mathbb{R}^{n \times s}$  and  $D \in \mathbb{R}^{s \times s}$
  - For each column indep. with replacement pick row i w.p.  $q_i$
  - Set  $\Omega_{i,j} = 1$  and  $D_{jj} = 1/\sqrt{q_i s}$

## LSS as a Subspace Embedding

• Thm.: If  $Z \in \mathbb{R}^{n \times k}$  has orthonormal columns then for  $s > 144k \log\left(\frac{2k}{\delta}\right)/\beta\epsilon^2$  if  $\Omega$  and D are constructed via LSS(Z,s,q) then for all i w.p.  $1-\delta$ :  $1-\epsilon \le \sigma_i^2(D^T\Omega^TZ) \le 1+\epsilon$ 

• (Matrix Chernoff): If 
$$X_1, ... X_s$$
 are i.i.d copies of a symmetric random matrix  $X \in \mathbb{R}^{k \times k}$  with  $E[X] = 0$ ,  $||X||_2 \le \gamma$  and  $||E[X^TX]||_2 \le s^2$  then for  $W = \frac{1}{s} \sum_{i=1}^s X_i$  and  $\epsilon > 0$ :

$$\Pr\left[\left|\left|W\right|\right|_{2} > \epsilon\right] \le 2k \exp\left(-\frac{s\epsilon^{2}}{2s^{2} + \frac{2\gamma\epsilon}{3}}\right)$$

#### Proof: LSS as a Subspace Embedding

- $U_i = i$ -th sampled row of Z in LSS(Z, s, q)
- $z_j = j$ -th row of Z
- $\bullet \ \ X_i = I_k U_i^T U_i / q_i$
- $E[X_i] = I_k \sum_{j=1}^n \frac{q_j z_j^T z_j}{q_j} = I_k Z^T Z = 0_{k \times k}$
- $\frac{z_j^T z_j}{q_j}$  is a rank-1 matrix with operator norm  $\leq \frac{||z_j||_2^2}{q_j} \leq \frac{k}{\beta}$ :

$$||X_i||_2 \le ||I_k||_2 + ||\frac{U_i^T U_i}{q_i}||_2 \le 1 + k/\beta$$

#### Proof: LSS as a Subspace Embedding

• 
$$E[X^T X] = I_k - 2E\left[\frac{U_i^T U_i}{q_i}\right] + E\left[\frac{U_i^T U_i U_i^T U_i}{q_i^2}\right]$$

$$= \sum_{j=1}^n \frac{Z_j^T Z_j Z_j^T Z_j}{q_j} - I_k$$

$$\leq \left(\frac{k}{\beta}\right) \sum_{j=1}^n Z_j^T Z_j - I_k$$

$$= \left(\frac{k}{\beta} - 1\right) I_k$$

- $||E[X^TX]||_2 \le \left(\frac{k}{\beta} 1\right)$
- Take  $W = \frac{1}{k} \sum_{i=1}^{S} X_i = I_k Z^T \Omega D D^T \Omega^T Z$
- By Matrix Chernoff for  $s = \Theta(k \log \frac{k}{\delta}/(\beta \epsilon^2))$ :

$$\Pr\left[\left|\left|I_k - Z^T \Omega D D^T \Omega^T Z\right|\right|_2 > \epsilon\right] \le \delta$$

#### LSS as a Subspace Embedding

- $A = Z\Sigma V^T$  (SVD of A)
- $||D^T \Omega^T A x||_2 =$
- $=(1 \pm \epsilon) ||\Sigma V^T x||_2$  (all sing. values up to  $1 \pm \epsilon$ )

$$=(1 \pm \epsilon) ||Ax||_2 (||Zy||_2 = ||y||_2)$$

• How to compute q in  $O(nnz(A) \log n + poly(k))$  time?

## Thin Singular Value Decomposition

- $A \in \mathbb{R}^{n \times d}$ ,  $U \in \mathbb{R}^{n \times d}$ ,  $\Sigma \in \mathbb{R}^{d \times d}$ ,  $V \in \mathbb{R}^{d \times d}$
- $A = U \Sigma V^T$  (computed in  $O(n d^2)$ ) time
- U has orthonormal columns,  $\Sigma$  is diagonal, V is unitary  $(V^TV=VV^T=I)$
- $\Sigma_{ii} = \sigma_i$  is the *i*-th singular value
- $v_i = i$ -th column of V is the i-th right singular vector:

$$\begin{aligned} \left| |Av_i| \right|_2 &= \left| |U \Sigma V^T v_i| \right|_2 = \left| \left| U \Sigma \mathbf{e}_i^T \right| \right|_2 = \sigma_i \left| \left| U \mathbf{e}_i^T \right| \right| \\ &= \sigma_i \end{aligned}$$

Moore-Penrose pseudoinverse :

$$A^+ = (A^T A)^{-1} A^T = V \Sigma^{-1} U^T$$

• Least squares solution:  $x^* = A^+ b = V \Sigma^{-1} U^T b$ 

#### **Approximating Leverage Scores**

- Thm. A constant-approx. leverage score distribution for  $A \in \mathbb{R}^{n \times d}$  can be computed with constant prob. in  $O(nnz(A)\log n + poly(d))$  time
- **S** = sparse embedding matrix with  $r = O(d^2/\gamma^2)$  rows for constant  $\gamma$  (Count-Sketch matrix)
- One non-zero entry per column of S => SA computed in nnz(A) time
- QR-factorization:  $\mathbf{QR} = \mathbf{SA}$  where  $\mathbf{Q}$  has orthonormal columns,  $\mathbf{S}$  is upper triangular (takes  $O(r\ d^2)$ ) time using e.g. Gram-Schmidt
- $q_i = \left| \left| e_i^T A R^{-1} G \right| \right|_2^2$  where  $G \in \mathbb{R}^{k \times t}$  is a matrix of i.i.d N(0,1/t) random variables for  $t = O\left(\frac{\log n}{\gamma^2}\right)$
- $R^{-1}G$  in  $O(k^2 \log n/\gamma^2)$ ,  $A(R^{-1}G)$  in  $O(nnz(A) \log n/\gamma^2)$

#### **Approximating Leverage Scores**

• 
$$q_i = \left| \left| e_i^T A R^{-1} G \right| \right|_2^2 \ge (1 - \gamma) \left| \left| e_i^T A R^{-1} \right| \right|_2^2$$

• Singular values of  $AR^{-1} \in [1 - \gamma, 1 + \gamma]$ 

$$\begin{aligned} \left| \left| AR^{-1}x \right| \right|_{2}^{2} &= (1 \pm \gamma) \left| \left| SAR^{-1}x \right| \right|_{2}^{2} \\ &= (1 \pm \gamma) \left| \left| \mathbf{Q} \mathbf{x} \right| \right|_{2}^{2} \\ &= (1 \pm \gamma) \left| \left| \mathbf{x} \right| \right|_{2}^{2} \end{aligned}$$

- $U = AR^{-1}T = \text{ o.n.b.}$  for the column space of A
- Singular values of T are  $\in [1-2\gamma, 1+2\gamma]$ , otherwise  $\left|\left|AR^{-1}Tv\right|\right|_{2}^{2} \le (1-2\gamma)(1+\gamma) < 1$  but  $\left|\left|AR^{-1}Tv\right|\right|_{2}^{2} = \left|\left|Uv\right|\right|_{2}^{2} = 1$
- $||e_i^T A R^{-1}||_2^2 = ||e_i^T U T^{-1}||_2^2 \ge (1 2\gamma) ||e_i^T U||_2^2 = (1 2\gamma)p_i$
- Thus,  $q_i \ge (1 \gamma)(1 2\gamma)p_i$

#### Least Squares Regression

- Dimension  $\tilde{O}$   $(d^2/\epsilon^2)$  can be reduced to  $O\left(\frac{d}{\epsilon^2}\right)$  by using sketch matrix S'' = S'S where S' is a dense OSS
- Instead of using leverage scores we could just use S'' as OSS and solve LSR in  $O(nnz(A) + poly(d/\epsilon))$  time
- Skylark: <a href="https://github.com/xdata-skylark/libskylark">https://github.com/xdata-skylark/libskylark</a>

## $L_1$ -regression

- $L_2$ -regression is too sensitive to outliers
- $\min_{x} \left| |Ax b| \right|_1 = \sum_{i=1}^n |b_i \langle A_{i,*}, x \rangle|$
- No closed-form solution
- Best running time by LP in poly(n, d) time
- Maximum Likelihood Estimators for noisy data:
  - $-L_2$  = MLE if noise is Gaussian
  - $-L_1$  = MLE if noise is Laplacian
- $L_1$  subspace embedding:

$$\forall x: \ \left| \left| SAx \right| \right|_1 = (1 \pm \epsilon) \left| \left| Ax \right| \right|_1$$

• Next time: approximate  $L_1$  —regression in O(n poly(d)) time.