CIS 700: "algorithms for Big Data"

Lecture 6: Graph Sketching

Slides at http://grigory.us/big-data-class.html

Grigory Yaroslavtsev

http://grigory.us

Sketching Graphs?

- We know how to sketch vectors: $v \rightarrow Mv$
- How about sketching graphs?
- $G(V, E) \equiv A_G$ (adjacency matrix): $A_G \rightarrow MA_G$
- Sketch columns of A_G
- n = |V|, m = |E|
- $O(poly(\log n))$ sketch per vertex / O(n) total
 - Check connectivity
 - Check bipartiteness
- As always, space rather than dimension. Why?

Graph Streams

- Semi-streaming model: [Muthukrishnan '05; Feigenbaum, Kannan, McGregor, Suri, Zhang'05]
 - Graph defined by the stream of edges e_1, \dots, e_m
 - Space $\tilde{O}(n)$, edges processed in order
 - Connectivity is easy on $\tilde{O}(n)$ space for insertion-only
- Dynamic graphs:
 - Stream of insertion/deletion updates $+e_{i_1},-e_{i_2},\ldots,-e_{i_t}$ (assume sequence is correct)
 - Resulting graph has edge e_i if it wasn't deleted after the last insertion
- Linear sketching dynamic graphs:

$$MA_{G \setminus e} = MA_G - MA_e$$

Distributed Computing

- Linear sketches for distributed processing
- S servers with o(m) memory:
 - Send m/S edges $(E_1, ..., E_S)$ to each server
 - Compute sketches $ME_1, ..., ME_S$ locally
 - Send sketches to a central server
 - Compute $MA_G = \sum_{i=1}^{S} ME_i$
- M has to have a small representation (same issue as in streaming)

Connectivity

- Thm. Connectivity is sketchable in $\tilde{O}(n)$ space
- Framework:
 - Take existing connectivity algorithm (Boruvka)
 - Sketch $A_G \rightarrow MA_G$
 - Run Boruvka on MA_G
- Important that the sketch is homomorphic w.r.t the algorithm

Part 1: Parallel Connectivity (Boruvka)

- Repeat until no edges left:
 - For each vertex, select any incident edge
 - Contract selected edges

• Lemma: process converges in $O(\log n)$ steps

Part 2: Graph Representation

- For a vertex i let a_i be a vector in $\mathbb{R}^{\binom{n}{2}}$
- Non-zero entries for edges (i, j)

$$-a_i[i,j] = 1 \text{ if } j > i$$

$$- a_i[i, j] = -1 \text{ if } j < i$$

Example:

$$a_1 = (1, 1, 1, 1, 0, ..., 0)$$

$$a_2 = (-1, 0, 0, 0, 0, 0, 1, 0, 1, ..., 0)$$

 $\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{1,6\},\{1,7\},\{2,3\},\{2.4\},\{2,5\},\dots$

• Lem: For any $S \subseteq V$ supp $(\sum_{i \in S} a_i) = E(S, V \setminus S)$

Part 3: L_0 -Sampling

• There is a distribution over $M \in \mathbb{R}^{d \times m}$ with $d = O(\log^2 m)$ such w.p. 9/10 that $\forall a \in \mathbb{R}^m$: $Ca \rightarrow e \in supp(a)$

[Cormode, Muthukrishnan, Rozenbaum'05; Jowhari, Saglam, Tardos '11]

• Constant probability suffices — still $O(\log n)$ Boruvka iterations

Final Algorithm

- Construct $\log n$ ℓ_0 -samplers for each a_i
- Run Boruvka on sketches:
 - Use C_1a_i to get an edge incident on a node j
 - For i = 2 to t:
 - To get incident edge on a component $S \subseteq V$ use:

$$\sum_{j \in S} C_i a_j = C_i \left(\sum_{j \in S} a_j \right) \to$$

$$\to e \in supp\left(\sum_{j \in S} a_j\right) = E(S, V \setminus S)$$

K-Connectivity

- Graph is k-connected is every cut has size $\geq k$
- Thm: There is a $O(nk \log^3 n)$ -size linear sketch for k-connectivity
- Generalization: There is an $O(n \log^5 n / \epsilon^2)$ size linear sketch which allows to approximate
 all cuts in a graph up to error $(1 \pm \epsilon)$

K-connectivity Algorithm

- Algorithm for k-connectivity:
 - Let F_1 be a spanning forest of G(V, E)
 - For i = 2, ..., k
 - Let F_i be a spanning forest of $G(V, E \setminus F_1 \setminus \cdots \setminus F_{i-1})$
- Lem: $G(V, F_1 + \cdots + F_k)$ is k-connected iff G(V, E) is.
- ⇒ Trivial
- \leftarrow Consider a cut in $G(V, \sum_{i=1}^k F_i)$ of size < k
- $\Rightarrow \exists i^*$: this cut didn't grow in step i^*
- \Rightarrow there is a cut in G(V, E) of size < k
- ⇒ contradiction

K-connectivity Algorithm

- Construct k independent linear sketches $\{M_1A_G, M_2A_G \dots, M_kA_G\}$ for connectivity
- Run k-connectivity algorithm on sketches:
 - Use M_1A_G to get a spanning forest F_1 of G
 - Use $M_2A_G M_2A_{F_1} = M_2(A_{G-F_1})$ to find F_2
 - Use $M_3A_G-M_3A_{F_1}-M_3A_{F_2}=M_3(A_{G-F_1-F_2})$ to find F_3

— ...

Bipartiteness

• Reduction: Given G define G' where vertices $v \to (v_1, v_2)$; edges $(u, v) \to (u_1, v_2) \& (u_2, v_1)$

- Lem: # connected components doubles iff the graph is bipartite.
- Thm: $O(n \log^3 n)$ -size linear sketch for k-connectivity (sketch G' (implicitly).)

Minimum Spanning Tree

• If $n_i = \#$ connected components in a subgraph induced by edges of weight $\leq (1 + \epsilon)^i$:

$$w(MST) \leq n - (1+\epsilon)^r + \sum_{i=0\dots r-1} \lambda_i n_i \leq (1+\epsilon)w(MST)$$
 where $\lambda_i = ((1+\epsilon)^{i+1} - (1+\epsilon)^i$

- cc(G) = #connected components of G
- Round weights up to the nearest power of $1 + \epsilon$
- $G_i \equiv \text{subgraph with edges of weight} \leq (1+\epsilon)^i$
- Edges taken by the Kruskal's algorithm:
 - $n cc(G_0)$ edges of weight 1
 - $-cc(G_0)-cc(G_1)$ edges of weight $(1+\epsilon)$
 - **–** ...
 - $-\operatorname{cc}(G_{i-1})-\operatorname{cc}(G_i)$ edges of weight $(1+\epsilon)^i$

Minimum Spanning Tree

- Let $r = \log_{1+\epsilon} W$ where $W = \max$ edge weight
- Overall weight:

$$n - cc(G_0) + \sum_{1}^{r} (1 + \epsilon)^i \left(cc(G_{i-1}) - cc(G_i) \right)$$

$$= n - (1 + \epsilon)^r + \sum_{1}^{r-1} \left((1 + \epsilon)^{i+1} - (1 + \epsilon)^i \right) cc(G_i)$$

• Thm: $(1 + \epsilon)$ -approx. MST weight can be computed with $\tilde{O}(n)$ linear sketch for W = poly(n)

MST: Single Linkage Clustering

• [Zahn'71] **Clustering** via MST (Single-linkage):

k clusters: remove k-1 longest edges from MST

Maximizes minimum intercluster distance

[Kleinberg, Tardos]

Cut Sparsification

- Two problems:
 - Approximating Min-Cut in the graph (up to $1 \pm \epsilon$)
 - Preserving all cuts in the graph (up to $1 \pm \epsilon$)
- General cut sparsification framework:
 - Sample each edge e with probability p_e
 - Assign sampled edges weights $1/p_e$
- Expected weight of each cut is preserved, but too many cuts — can't take union bound

Cut Sparsification

- For an edge e let λ_e = weight of the minimum cut that contains e
- λ = size of the Min-Cut in G
- Thm [Fung et al.]: If G is an undirected weighted graph the if $p_e \geq \min\left(\frac{c\log^2 n}{\lambda_e\,\epsilon^2},1\right)$ then the cut sparsification alg. Preserves weights of all cuts up to $(1\pm\epsilon)$
- Thm [Karger]: $p_e \ge \min\left(\frac{C\log n}{\lambda\,\epsilon^2},1\right)$ preserves Min-Cut up to $(1\pm\epsilon)$

Minimum Cut

Algorithm:

- For $i = \{0,1,...,2 \log n\}$:
 - Let G_i be the subgraph of G where each edge is sampled with probability $1/2^i$
 - Let $H_i = F_1, ..., F_k$ where $k = O\left(\frac{1}{\epsilon^2} \cdot \log n\right)$ and F_i are forests constructed by the k-connectivity alg.
- Return $2^{j}\lambda(H_{j})$ where $j = \min\{i : \lambda(H_{i}) < k\}$

Space:
$$O\left(\frac{n\log^4 n}{\epsilon^2}\right)$$
, works for dynamic graph streams

Minimum Cut: Analysis

- Key property: If G_i has $\leq k$ edges across a cut then H_i contains all such edges
- $i^* = \left[\log \max\left\{1, \frac{\lambda \epsilon^2}{6 \log n}\right\}\right]$
- $i \le i^* \Rightarrow p_e \ge \min\left(\frac{6\log n}{\lambda\epsilon^2}, 1\right) \Rightarrow \min \text{ cut in } G_i$ is approximating min-cut in G up to $(1 \pm \epsilon)$
- $i=i^*$: By Chernoff bound # edges in G_{i^*} that crosses min-cut in G is $O\left(\frac{1}{\epsilon^2}\log n\right) \leq k$ w.h.p.

Cut Sparsification

Algorithm:

- For $i = \{0,1,...,2 \log n\}$:
 - Let G_i be the subgraph of G where each edge is sampled with probability $1/2^i$
 - Let $H_i = F_1, ..., F_k$ where $k = O\left(\frac{1}{\epsilon^2} \cdot \log^2 n\right)$ and F_i are forests constructed by the k-connectivity alg.
- For each edge e let $j_e = \min \{i: \lambda_e(H_i) < k\}$.
- If $e \in H_{j_e}$ then add e to the sparsifier with weight 2^{j_e}
- Space: $O\left(\frac{n\log^5 n}{\epsilon^2}\right)$, works for dynamic graph streams
- Analysis similar to the Min-Cut using [Fung et al.]