CIS 700: “algorithms for Big Data”

Lecture 6: Graph Sketching

Slides at http://grigory.us/big-data-class.html

Grigory Yaroslavtsev

http://grigory.us
Sketching Graphs?

• We know how to sketch vectors: $\mathbf{v} \rightarrow M\mathbf{v}$
• How about sketching graphs?
• $G(V, E) \equiv A_G$ (adjacency matrix): $A_G \rightarrow MA_G$
• Sketch columns of A_G
• $n = |V|, m = |E|$
• $O(poly(\log n))$ sketch per vertex / $\tilde{O}(n)$ total
 – Check connectivity
 – Check bipartiteness
• As always, space rather than dimension. Why?
Graph Streams

• **Semi-streaming model:** [Muthukrishnan ’05; Feigenbaum, Kannan, McGregor, Suri, Zhang’05]
 – Graph defined by the stream of edges e_1, \ldots, e_m
 – Space $\tilde{O}(n)$, edges processed in order
 – Connectivity is easy on $\tilde{O}(n)$ space for insertion-only

• **Dynamic graphs:**
 – Stream of insertion/deletion updates
 $+ e_{i_1}, -e_{i_2}, \ldots, -e_{i_t}$ (assume sequence is correct)
 – Resulting graph has edge e_i if it wasn’t deleted after the last insertion

• **Linear sketching dynamic graphs:**
 \[MA_{G\setminus e} = MA_G - MA_e \]
Distributed Computing

• Linear sketches for distributed processing
• S servers with $o(m)$ memory:
 – Send m/S edges (E_1, \ldots, E_S) to each server
 – Compute sketches ME_1, \ldots, ME_s locally
 – Send sketches to a central server
 – Compute $MA_G = \sum_i^S ME_i$
• M has to have a small representation (same issue as in streaming)
Connectivity

• **Thm.** Connectivity is sketchable in $\tilde{O}(n)$ space

• **Framework:**
 – Take existing connectivity algorithm (Boruvka)
 – Sketch $A_G \rightarrow MA_G$
 – Run Boruvka on MA_G

• Important that the sketch is homomorphich w.r.t the algorithm
Part 1: Parallel Connectivity (Boruvka)

- Repeat until no edges left:
 - For each vertex, select any incident edge
 - Contract selected edges

- **Lemma**: process converges in $O(\log n)$ steps
Part 2: Graph Representation

- For a vertex i let a_i be a vector in $\mathbb{R}^\binom{n}{2}$
- Non-zero entries for edges (i, j)
 - $a_i[i, j] = 1$ if $j > i$
 - $a_i[i, j] = -1$ if $j < i$
- Example:
 - $a_1 = (1, 1, 1, 1, 0, ..., 0)$
 - $a_2 = (-1, 0, 0, 0, 0, 0, 1, 0, 1, ..., 0)$
- Lemma: For any $S \subseteq V$ \(\text{supp}(\sum_{i \in S} a_i) = E(S, V \setminus S) \)
Part 3: L_0-Sampling

• There is a distribution over $M \in \mathbb{R}^{d \times m}$ with $d = O(\log^2 m)$ such w.p. 9/10 that $\forall a \in \mathbb{R}^m$:
 $$Ca \rightarrow e \in \text{supp}(a)$$
 [Cormode, Muthukrishnan, Rozenbaum’05; Jowhari, Saglam, Tardos ‘11]

• Constant probability suffices — still $O(\log n)$ Boruvka iterations
Final Algorithm

• Construct $\log n \ \ell_0$-samplers for each a_i

• Run Boruvka on sketches:
 – Use C_1a_j to get an edge incident on a node j
 – For $i = 2$ to t:
 • To get incident edge on a component $S \subseteq V$ use:
 $$\sum_{j \in S} C_i a_j = C_i \left(\sum_{j \in S} a_j \right) \rightarrow$$
 $$\rightarrow e \in \text{supp} \left(\sum_{j \in S} a_j \right) = E(S, V \setminus S)$$
K-Connectivity

• Graph is k-connected is every cut has size $\geq k$

• Thm: There is a $O(nk \log^3 n)$-size linear sketch for k-connectivity

• Generalization: There is an $O(n \log^5 n / \epsilon^2)$-size linear sketch which allows to approximate all cuts in a graph up to error $(1 \pm \epsilon)$
K-connectivity Algorithm

• Algorithm for k-connectivity:
 – Let F_1 be a spanning forest of $G(V, E)$
 – For $i = 2, ..., k$
 • Let F_i be a spanning forest of $G(V, E \setminus F_1 \setminus \cdots \setminus F_{i-1})$

• **Lem:** $G(V, F_1 + \cdots + F_k)$ is k-connected iff $G(V, E)$ is.

• \Rightarrow Trivial

• \Leftarrow Consider a cut in $G(V, \sum_{i=1}^{k} F_i)$ of size $< k$
 $\Rightarrow \exists i^*$: this cut didn’t grow in step i^*
 \Rightarrow there is a cut in $G(V, E)$ of size $< k$
 \Rightarrow contradiction
K-connectivity Algorithm

• Construct k independent linear sketches $\{M_1A_G, M_2A_G, \ldots, M_kA_G\}$ for connectivity

• Run k-connectivity algorithm on sketches:
 – Use M_1A_G to get a spanning forest F_1 of G
 – Use $M_2A_G - M_2A_{F_1} = M_2(A_G - F_1)$ to find F_2
 – Use $M_3A_G - M_3A_{F_1} - M_3A_{F_2} = M_3(A_G - F_1 - F_2)$ to find F_3
 – ...
Bipartiteness

• Reduction: Given G define G' where vertices $v \rightarrow (v_1, v_2)$; edges $(u, v) \rightarrow (u_1, v_2) \& (u_2, v_1)$

• Lem: # connected components doubles iff the graph is bipartite.

• Thm: $O(n \log^3 n)$-size linear sketch for k-connectivity (sketch G' (implicitly)).
Minimum Spanning Tree

• If \(n_i = \# \text{connected components in a subgraph induced by edges of weight } \leq (1 + \epsilon)^i \):

\[
w(MST) \leq n - (1 + \epsilon)^r + \sum_{i=0}^{r-1} \lambda_i n_i \leq (1 + \epsilon)w(MST)
\]

where \(\lambda_i = ((1 + \epsilon)^{i+1} - (1 + \epsilon)^i) \)

• \(\text{cc}(G) = \# \text{connected components of } G \)

• Round weights up to the nearest power of \(1 + \epsilon \)

• \(G_i \equiv \text{subgraph with edges of weight } \leq (1 + \epsilon)^i \)

• Edges taken by the Kruskal’s algorithm:
 – \(n - \text{cc}(G_0) \) edges of weight 1
 – \(\text{cc}(G_0) - \text{cc}(G_1) \) edges of weight \((1 + \epsilon)\)
 – ...
 – \(\text{cc}(G_{i-1}) - \text{cc}(G_i) \) edges of weight \((1 + \epsilon)^i\)
Minimum Spanning Tree

- Let \(r = \log_{1+\epsilon} W \) where \(W = \max \text{ edge weight} \)
- Overall weight:
 \[
 n - cc(G_0) + \sum_{i=1}^{r-1} (1 + \epsilon)^i (cc(G_{i-1}) - cc(G_i))
 \]
 \[
 = n - (1 + \epsilon)^r + \sum_{i=0}^{r-1} ((1 + \epsilon)^{i+1} - (1 + \epsilon)^i) cc(G_i)
 \]
- **Thm:** \((1 + \epsilon)\)-approx. MST weight can be computed with \(\widetilde{O}(n) \) linear sketch for \(W = \text{poly}(n) \)
MST: Single Linkage Clustering

- [Zahn’71] **Clustering** via MST (Single-linkage): k clusters: remove $k - 1$ longest edges from MST
- Maximizes **minimum** intercluster distance

[Kleinberg, Tardos]
Cut Sparsification

- Two problems:
 - Approximating Min-Cut in the graph (up to $1 \pm \epsilon$)
 - Preserving all cuts in the graph (up to $1 \pm \epsilon$)
- General cut sparsification framework:
 - Sample each edge e with probability p_e
 - Assign sampled edges weights $1/p_e$
- Expected weight of each cut is preserved, but too many cuts — can’t take union bound
Cut Sparsification

- For an edge e let $\lambda_e = \text{weight of the minimum cut that contains } e$
- $\lambda = \text{size of the Min-Cut in } G$
- **Thm [Fung et al.]:** If G is an undirected weighted graph the if $p_e \geq \min \left(\frac{C \log^2 n}{\lambda e \epsilon^2}, 1 \right)$ then the cut sparsification alg. Preserves weights of all cuts up to $(1 \pm \epsilon)$
- **Thm [Karger]:** $p_e \geq \min \left(\frac{C \log n}{\lambda \epsilon^2}, 1 \right)$ preserves Min-Cut up to $(1 \pm \epsilon)$
Minimum Cut

Algorithm:

- For $i = \{0, 1, \ldots, 2 \log n\}$:
 - Let G_i be the subgraph of G where each edge is sampled with probability $1/2^i$
 - Let $H_i = F_1, \ldots, F_k$ where $k = O\left(\frac{1}{\epsilon^2} \cdot \log n\right)$ and F_i are forests constructed by the k-connectivity alg.
- Return $2^j \lambda(H_j)$ where $j = \min\{i : \lambda(H_i) < k\}$

Space: $O\left(\frac{n \log^4 n}{\epsilon^2}\right)$, works for dynamic graph streams
Minimum Cut: Analysis

• Key property: If G_i has $\leq k$ edges across a cut then H_i contains all such edges

• $i^* = \left\lceil \log \max \left\{ 1, \frac{\lambda \epsilon^2}{6 \log n} \right\} \right\rceil$

• $i \leq i^* \Rightarrow p_e \geq \min \left(\frac{6 \log n}{\lambda \epsilon^2}, 1 \right) \Rightarrow \text{min cut in } G_i$ is approximating min-cut in G up to $(1 \pm \epsilon)$

• $i = i^*$: By Chernoff bound # edges in G_{i^*} that crosses min-cut in G is $O \left(\frac{1}{\epsilon^2 \log n} \right) \leq k$ w.h.p.
Cut Sparsification

Algorithm:

- For $i = \{0, 1, \ldots, 2 \log n\}$:
 - Let G_i be the subgraph of G where each edge is sampled with probability $1/2^i$
 - Let $H_i = F_1, \ldots, F_k$ where $k = O\left(\frac{1}{\epsilon^2} \cdot \log^2 n\right)$ and F_i are forests constructed by the k-connectivity alg.

- For each edge e let $j_e = \min \{i : \lambda_e(H_i) < k\}$.

- If $e \in H_{j_e}$ then add e to the sparsifier with weight 2^{j_e}

- Space: $O\left(\frac{n \log^5 n}{\epsilon^2}\right)$, works for dynamic graph streams

- Analysis similar to the Min-Cut using [Fung et al.]