
CIS 700:  
“algorithms for Big Data” 

Grigory Yaroslavtsev 
http://grigory.us 

Lecture 6: Graph Sketching 

Slides at http://grigory.us/big-data-class.html 

http://grigory.us/
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html


Sketching Graphs? 

• We know how to sketch vectors: 𝑣 → 𝑀𝑣 

• How about sketching graphs? 

• 𝐺 𝑉, 𝐸 ≡ 𝐴𝐺  (adjacency matrix): 𝐴𝐺 → 𝑀𝐴𝐺  

• Sketch columns of 𝐴𝐺  

• 𝑛 = 𝑉 ,𝑚 = |𝐸| 

• 𝑂(𝑝𝑜𝑙𝑦(log 𝑛)) sketch per vertex / 𝑂 (𝑛) total 
– Check connectivity 

– Check bipartiteness 

• As always, space rather than dimension. Why? 



Graph Streams 

• Semi-streaming model: [Muthukrishnan ’05; Feigenbaum, 
Kannan, McGregor, Suri, Zhang’05] 

– Graph defined by the stream of edges 𝑒1, … , 𝑒𝑚 

– Space 𝑂 𝑛 , edges processed in order 

– Connectivity is easy on 𝑂 (𝑛) space for insertion-only 

• Dynamic graphs: 
– Stream of insertion/deletion updates 

+ 𝑒𝑖1 , −𝑒𝑖2 , … , −𝑒𝑖𝑡  (assume sequence is correct) 

– Resulting graph has edge 𝑒𝑖 if it wasn’t deleted after 
the last insertion 

• Linear sketching dynamic graphs:  
𝑀𝐴𝐺∖𝑒 = 𝑀𝐴𝐺 − MAe  

 



Distributed Computing 

• Linear sketches for distributed processing 

• 𝑆 servers with o(m) memory: 

– Send 𝑚/𝑆 edges (𝐸1, … , 𝐸𝑠) to each server 

– Compute sketches 𝑀𝐸1, … ,𝑀𝐸𝑠 locally 

– Send sketches to a central server 

– Compute 𝑀𝐴𝐺 =  𝑀𝐸𝑖
𝑠
𝑖  

• 𝑀 has to have a small representation (same 
issue as in streaming) 

 

 



Connectivity 

• Thm. Connectivity is sketchable in 𝑂 (𝑛) space 

• Framework: 

– Take existing connectivity algorithm (Boruvka) 

– Sketch 𝐴𝐺 → 𝑀𝐴𝐺  

– Run Boruvka on 𝑀𝐴𝐺  

• Important that the sketch is homomorphic 
w.r.t the algorithm 

  

 



Part 1: Parallel Connectivity (Boruvka) 

• Repeat until no edges left: 

– For each vertex, select any incident edge 

– Contract selected edges  

 

 

 

 

• Lemma: process converges in 𝑂(log 𝑛) steps 

 



Part 2: Graph Representation 

• For a vertex 𝑖 let 𝑎𝑖 be a vector in ℝ
𝑛
2  

• Non-zero entries for edges 𝑖, 𝑗  

– 𝑎𝑖 𝑖, 𝑗 = 1 if 𝑗 > 𝑖 

–  𝑎𝑖 𝑖, 𝑗 = −1 if j < 𝑖 

• Example:  
𝑎1 =     1, 1, 1, 1, 0, … , 0  
𝑎2 = −1, 0, 0, 0, 0, 0, 1, 0, 1, … , 0  

   

• Lem: For any 𝑆 ⊆ 𝑉 supp  𝑎𝑖𝑖∈𝑆 = 𝐸(𝑆, 𝑉 ∖ 𝑆) 
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Part 3: 𝐿0-Sampling 

• There is a distribution over 𝑀 ∈ ℝ𝑑×𝑚 with 
𝑑 = 𝑂(log2 𝑚) such w.p. 9/10 that ∀𝑎 ∈ ℝ𝑚: 

𝐶𝑎 → 𝑒 ∈ 𝑠𝑢𝑝𝑝(𝑎) 

[Cormode, Muthukrishnan, Rozenbaum’05; Jowhari, 
Saglam, Tardos ‘11] 

• Constant probability suffices − still 𝑂 log 𝑛  Boruvka 
iterations 



Final Algorithm 
• Construct log 𝑛  ℓ0-samplers for each 𝑎𝑖 

• Run Boruvka on sketches: 

– Use 𝐶1𝑎𝑗  to get an edge incident on a node 𝑗 

– For 𝑖 = 2 to 𝑡: 

• To get incident edge on a component 𝑆 ⊆ 𝑉 use: 

 𝐶𝑖𝑎𝑗 = 𝐶𝑖  𝑎𝑗

𝑗∈𝑆

→

𝑗∈𝑆

 

→ 𝑒 ∈ 𝑠𝑢𝑝𝑝  𝑎𝑗

𝑗∈𝑆

= 𝐸(𝑆, 𝑉 ∖ 𝑆) 

   



K-Connectivity 

• Graph is 𝑘-connected is every cut has size ≥ 𝑘 

• Thm: There is a 𝑂(𝑛𝑘 log3 𝑛)-size linear 
sketch for k-connectivity 

• Generalization: There is an 𝑂(𝑛 log5 𝑛 /𝜖2)-
size linear sketch which allows to approximate 
all cuts in a graph up to error (1 ± 𝜖) 



K-connectivity Algorithm 

• Algorithm for 𝑘-connectivity: 
– Let 𝐹1 be a spanning forest of 𝐺(𝑉, 𝐸) 

– For 𝑖 = 2,… , 𝑘 
• Let 𝐹𝑖  be a spanning forest of 𝐺(𝑉, 𝐸 ∖ 𝐹1 ∖ ⋯∖ 𝐹𝑖−1) 

• Lem: 𝐺(𝑉, 𝐹1 + ⋯+ 𝐹𝑘) is k-connected iff G(V,E) 
is. 

• ⇒ Trivial 

• ⇐ Consider a cut in 𝐺(𝑉,  𝐹𝑖
𝑘
𝑖=1 ) of size < 𝑘 

⇒ ∃𝑖∗: this cut didn’t grow in step 𝑖∗  

⇒ there is a cut in 𝐺(𝑉, 𝐸) of size < 𝑘 
⇒ contradiction   



K-connectivity Algorithm 

• Construct 𝑘 independent linear sketches 
*𝑀1𝐴𝐺 , 𝑀2𝐴𝐺 … ,𝑀𝑘𝐴𝐺+ for connectivity 

• Run 𝑘-connectivity algorithm on sketches: 

– Use 𝑀1𝐴𝐺  to get a spanning forest 𝐹1 of 𝐺 

– Use 𝑀2𝐴𝐺 − 𝑀2𝐴𝐹1 = 𝑀2(𝐴𝐺−𝐹1) to find 𝐹2 

– Use 𝑀3𝐴𝐺 − 𝑀3𝐴𝐹1 − 𝑀3𝐴𝐹2 = 𝑀3(𝐴𝐺−𝐹1−𝐹2) to 

find 𝐹3 

– … 



Bipartiteness 
• Reduction: Given 𝐺 define 𝐺′ where vertices 

𝑣 → (𝑣1, 𝑣2); edges 𝑢, 𝑣 → (𝑢1, 𝑣2) & (𝑢2, 𝑣1) 

 

 

 

 

 

• Lem: # connected components doubles iff the graph 
is bipartite.  

• Thm: 𝑂(𝑛 log3 𝑛)-size linear sketch for k-
connectivity (sketch 𝐺′ (implicitly).) 

 

 

→ → 



Minimum Spanning Tree 

• If 𝑛𝑖 = # connected components in a subgraph induced by 
edges of weight ≤ 1 + 𝜖 𝑖: 

𝑤 𝑀𝑆𝑇 ≤ 𝑛 − 1 + 𝜖 𝑟 +  𝜆𝑖𝑛𝑖 ≤ 1 + 𝜖 𝑤 𝑀𝑆𝑇

𝑖=0…𝑟−1

 

where 𝜆𝑖 = ( 1 + 𝜖 𝑖+1− 1 + 𝜖 𝑖  
• cc(G) = #connected components of 𝐺 
• Round weights up to the nearest power of 1 + 𝜖 
•  𝐺𝑖 ≡ subgraph with edges of weight ≤ 1 + 𝜖 𝑖 
• Edges taken by the Kruskal’s algorithm: 

– n – cc(𝐺0) edges of weight 1 
– 𝑐𝑐 𝐺0 − 𝑐𝑐(𝐺1) edges of weight (1 + 𝜖)  
– … 
– cc 𝐺𝑖−1 − cc 𝐺𝑖  edges of weight 1 + 𝜖 𝑖 

 



Minimum Spanning Tree 

• Let 𝑟 = log1+𝜖 𝑊 where 𝑊 = max edge weight 

• Overall weight: 

𝑛 − 𝑐𝑐 𝐺0 +  1 + 𝜖 𝑖𝑟
1 (𝑐𝑐 𝐺𝑖−1 − 𝑐𝑐(𝐺𝑖)) 

= 𝑛 − 1 + 𝜖 𝑟 +  ( 1 + 𝜖 𝑖+1− 1 + 𝜖 𝑖) 𝑐𝑐(𝐺𝑖)

𝑟−1

0

 

• Thm: 1 + 𝜖 -approx. MST weight can be 
computed with 𝑂 𝑛  linear sketch for 𝑊 =
𝑝𝑜𝑙𝑦(𝑛) 



MST: Single Linkage Clustering 
• [Zahn’71] Clustering via MST (Single-linkage):  

k clusters: remove 𝒌 − 𝟏 longest edges from MST 

• Maximizes minimum intercluster distance 

[Kleinberg, Tardos] 



Cut Sparsification 

• Two problems: 

– Approximating Min-Cut in the graph (up to 1 ± 𝜖) 

– Preserving all cuts in the graph (up to 1 ± 𝜖) 

• General cut sparsification framework: 

– Sample each edge 𝑒 with probability 𝑝𝑒 

– Assign sampled edges weights 1/𝑝𝑒 

• Expected weight of each cut is preserved, but 
too many cuts − can’t take union bound  



Cut Sparsification 

• For an edge 𝑒 let 𝜆𝑒 = weight of the minimum 
cut that contains 𝑒 

• 𝜆 = size of the Min-Cut in G 

• Thm [Fung et al.]: If 𝐺 is an undirected 

weighted graph the if 𝑝𝑒 ≥ min
𝐶 log2 𝑛

𝜆𝑒 𝜖
2 , 1  

then the cut sparsification alg.  Preserves 
weights of all cuts up to (1 ± 𝜖) 

• Thm [Karger]: 𝑝𝑒 ≥ min
𝐶 log 𝑛

𝜆 𝜖2 , 1  preserves 

Min-Cut up to (1 ± 𝜖) 

 



Minimum Cut 

Algorithm: 

• For 𝑖 =  0,1, … , 2 log 𝑛 : 
– Let 𝐺𝑖 be the subgraph of 𝐺 where each edge is 

sampled with probability 1/2𝑖 

– Let 𝐻𝑖 = F1, … , 𝐹𝑘 where 𝑘 = 𝑂
1

𝜖2 ⋅ log 𝑛  and 𝐹𝑖 are 

forests constructed by the k-connectivity alg.  

• Return 2𝑗𝜆(𝐻𝑗) where 𝑗 = min *𝑖 ∶ 𝜆 𝐻𝑖 < 𝑘+ 

 

Space: 𝑂
𝑛 log4 𝑛

𝜖2 , works for dynamic graph streams 



Minimum Cut: Analysis 

• Key property: If 𝐺𝑖 has ≤ 𝑘 edges across a cut 
then 𝐻𝑖  contains all such edges 

• 𝑖∗ = logmax 1,
𝜆𝜖2

6 log 𝑛
  

• 𝑖 ≤ 𝑖∗ ⇒ 𝑝𝑒 ≥ min
6 log 𝑛

𝜆𝜖2 , 1 ⇒ min cut in 𝐺𝑖 

is approximating min-cut in 𝐺 up to (1 ± 𝜖) 

• 𝑖 = 𝑖∗: By Chernoff bound # edges in 𝐺𝑖∗  that 

crosses min-cut in 𝐺 is 𝑂
1

𝜖2 log 𝑛 ≤ 𝑘 w.h.p.  



Cut Sparsification 

Algorithm: 
• For 𝑖 =  0,1, … , 2 log 𝑛 : 

– Let 𝐺𝑖 be the subgraph of 𝐺 where each edge is sampled with 
probability 1/2𝑖 

– Let 𝐻𝑖 = F1, … , 𝐹𝑘 where 𝑘 = 𝑂
1

𝜖2 ⋅ log2 𝑛  and 𝐹𝑖  are forests 
constructed by the k-connectivity alg.  

• For each edge 𝑒 let 𝑗𝑒 = min i: 𝜆𝑒 𝐻𝑖 < 𝑘 .  

• If 𝑒 ∈ 𝐻𝑗𝑒  then add e to the sparsifier with weight 2𝑗𝑒  
 

• Space: 𝑂
𝑛 log5 𝑛

𝜖2 , works for dynamic graph streams 

• Analysis similar to the Min-Cut using [Fung et al.] 
 


