
CIS 700:
“algorithms for Big Data”

Grigory Yaroslavtsev
http://grigory.us

Lecture 6: Graph Sketching

Slides at http://grigory.us/big-data-class.html

http://grigory.us/
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html

Sketching Graphs?

• We know how to sketch vectors: 𝑣 → 𝑀𝑣

• How about sketching graphs?

• 𝐺 𝑉, 𝐸 ≡ 𝐴𝐺 (adjacency matrix): 𝐴𝐺 → 𝑀𝐴𝐺

• Sketch columns of 𝐴𝐺

• 𝑛 = 𝑉 ,𝑚 = |𝐸|

• 𝑂(𝑝𝑜𝑙𝑦(log 𝑛)) sketch per vertex / 𝑂 (𝑛) total
– Check connectivity

– Check bipartiteness

• As always, space rather than dimension. Why?

Graph Streams

• Semi-streaming model: [Muthukrishnan ’05; Feigenbaum,
Kannan, McGregor, Suri, Zhang’05]

– Graph defined by the stream of edges 𝑒1, … , 𝑒𝑚

– Space 𝑂 𝑛 , edges processed in order

– Connectivity is easy on 𝑂 (𝑛) space for insertion-only

• Dynamic graphs:
– Stream of insertion/deletion updates

+ 𝑒𝑖1 , −𝑒𝑖2 , … , −𝑒𝑖𝑡 (assume sequence is correct)

– Resulting graph has edge 𝑒𝑖 if it wasn’t deleted after
the last insertion

• Linear sketching dynamic graphs:
𝑀𝐴𝐺∖𝑒 = 𝑀𝐴𝐺 − MAe

Distributed Computing

• Linear sketches for distributed processing

• 𝑆 servers with o(m) memory:

– Send 𝑚/𝑆 edges (𝐸1, … , 𝐸𝑠) to each server

– Compute sketches 𝑀𝐸1, … ,𝑀𝐸𝑠 locally

– Send sketches to a central server

– Compute 𝑀𝐴𝐺 = 𝑀𝐸𝑖
𝑠
𝑖

• 𝑀 has to have a small representation (same
issue as in streaming)

Connectivity

• Thm. Connectivity is sketchable in 𝑂 (𝑛) space

• Framework:

– Take existing connectivity algorithm (Boruvka)

– Sketch 𝐴𝐺 → 𝑀𝐴𝐺

– Run Boruvka on 𝑀𝐴𝐺

• Important that the sketch is homomorphic
w.r.t the algorithm

Part 1: Parallel Connectivity (Boruvka)

• Repeat until no edges left:

– For each vertex, select any incident edge

– Contract selected edges

• Lemma: process converges in 𝑂(log 𝑛) steps

Part 2: Graph Representation

• For a vertex 𝑖 let 𝑎𝑖 be a vector in ℝ
𝑛
2

• Non-zero entries for edges 𝑖, 𝑗

– 𝑎𝑖 𝑖, 𝑗 = 1 if 𝑗 > 𝑖

– 𝑎𝑖 𝑖, 𝑗 = −1 if j < 𝑖

• Example:
𝑎1 = 1, 1, 1, 1, 0, … , 0
𝑎2 = −1, 0, 0, 0, 0, 0, 1, 0, 1, … , 0

• Lem: For any 𝑆 ⊆ 𝑉 supp 𝑎𝑖𝑖∈𝑆 = 𝐸(𝑆, 𝑉 ∖ 𝑆)

1

2

6

4

7

5

3

1,2 , 1,3 , 1,4 , 1,5 , 1,6 , 1,7 , 2,3 , 2.4 . 2,5 , …

Part 3: 𝐿0-Sampling

• There is a distribution over 𝑀 ∈ ℝ𝑑×𝑚 with
𝑑 = 𝑂(log2 𝑚) such w.p. 9/10 that ∀𝑎 ∈ ℝ𝑚:

𝐶𝑎 → 𝑒 ∈ 𝑠𝑢𝑝𝑝(𝑎)

[Cormode, Muthukrishnan, Rozenbaum’05; Jowhari,
Saglam, Tardos ‘11]

• Constant probability suffices − still 𝑂 log 𝑛 Boruvka
iterations

Final Algorithm
• Construct log 𝑛 ℓ0-samplers for each 𝑎𝑖

• Run Boruvka on sketches:

– Use 𝐶1𝑎𝑗 to get an edge incident on a node 𝑗

– For 𝑖 = 2 to 𝑡:

• To get incident edge on a component 𝑆 ⊆ 𝑉 use:

 𝐶𝑖𝑎𝑗 = 𝐶𝑖 𝑎𝑗

𝑗∈𝑆

→

𝑗∈𝑆

→ 𝑒 ∈ 𝑠𝑢𝑝𝑝 𝑎𝑗

𝑗∈𝑆

= 𝐸(𝑆, 𝑉 ∖ 𝑆)

K-Connectivity

• Graph is 𝑘-connected is every cut has size ≥ 𝑘

• Thm: There is a 𝑂(𝑛𝑘 log3 𝑛)-size linear
sketch for k-connectivity

• Generalization: There is an 𝑂(𝑛 log5 𝑛 /𝜖2)-
size linear sketch which allows to approximate
all cuts in a graph up to error (1 ± 𝜖)

K-connectivity Algorithm

• Algorithm for 𝑘-connectivity:
– Let 𝐹1 be a spanning forest of 𝐺(𝑉, 𝐸)

– For 𝑖 = 2,… , 𝑘
• Let 𝐹𝑖 be a spanning forest of 𝐺(𝑉, 𝐸 ∖ 𝐹1 ∖ ⋯∖ 𝐹𝑖−1)

• Lem: 𝐺(𝑉, 𝐹1 + ⋯+ 𝐹𝑘) is k-connected iff G(V,E)
is.

• ⇒ Trivial

• ⇐ Consider a cut in 𝐺(𝑉, 𝐹𝑖
𝑘
𝑖=1) of size < 𝑘

⇒ ∃𝑖∗: this cut didn’t grow in step 𝑖∗

⇒ there is a cut in 𝐺(𝑉, 𝐸) of size < 𝑘
⇒ contradiction

K-connectivity Algorithm

• Construct 𝑘 independent linear sketches
*𝑀1𝐴𝐺 , 𝑀2𝐴𝐺 … ,𝑀𝑘𝐴𝐺+ for connectivity

• Run 𝑘-connectivity algorithm on sketches:

– Use 𝑀1𝐴𝐺 to get a spanning forest 𝐹1 of 𝐺

– Use 𝑀2𝐴𝐺 − 𝑀2𝐴𝐹1 = 𝑀2(𝐴𝐺−𝐹1) to find 𝐹2

– Use 𝑀3𝐴𝐺 − 𝑀3𝐴𝐹1 − 𝑀3𝐴𝐹2 = 𝑀3(𝐴𝐺−𝐹1−𝐹2) to

find 𝐹3

– …

Bipartiteness
• Reduction: Given 𝐺 define 𝐺′ where vertices

𝑣 → (𝑣1, 𝑣2); edges 𝑢, 𝑣 → (𝑢1, 𝑣2) & (𝑢2, 𝑣1)

• Lem: # connected components doubles iff the graph
is bipartite.

• Thm: 𝑂(𝑛 log3 𝑛)-size linear sketch for k-
connectivity (sketch 𝐺′ (implicitly).)

→ →

Minimum Spanning Tree

• If 𝑛𝑖 = # connected components in a subgraph induced by
edges of weight ≤ 1 + 𝜖 𝑖:

𝑤 𝑀𝑆𝑇 ≤ 𝑛 − 1 + 𝜖 𝑟 + 𝜆𝑖𝑛𝑖 ≤ 1 + 𝜖 𝑤 𝑀𝑆𝑇

𝑖=0…𝑟−1

where 𝜆𝑖 = (1 + 𝜖 𝑖+1− 1 + 𝜖 𝑖
• cc(G) = #connected components of 𝐺
• Round weights up to the nearest power of 1 + 𝜖
• 𝐺𝑖 ≡ subgraph with edges of weight ≤ 1 + 𝜖 𝑖
• Edges taken by the Kruskal’s algorithm:

– n – cc(𝐺0) edges of weight 1
– 𝑐𝑐 𝐺0 − 𝑐𝑐(𝐺1) edges of weight (1 + 𝜖)
– …
– cc 𝐺𝑖−1 − cc 𝐺𝑖 edges of weight 1 + 𝜖 𝑖

Minimum Spanning Tree

• Let 𝑟 = log1+𝜖 𝑊 where 𝑊 = max edge weight

• Overall weight:

𝑛 − 𝑐𝑐 𝐺0 + 1 + 𝜖 𝑖𝑟
1 (𝑐𝑐 𝐺𝑖−1 − 𝑐𝑐(𝐺𝑖))

= 𝑛 − 1 + 𝜖 𝑟 + (1 + 𝜖 𝑖+1− 1 + 𝜖 𝑖) 𝑐𝑐(𝐺𝑖)

𝑟−1

0

• Thm: 1 + 𝜖 -approx. MST weight can be
computed with 𝑂 𝑛 linear sketch for 𝑊 =
𝑝𝑜𝑙𝑦(𝑛)

MST: Single Linkage Clustering
• [Zahn’71] Clustering via MST (Single-linkage):

k clusters: remove 𝒌 − 𝟏 longest edges from MST

• Maximizes minimum intercluster distance

[Kleinberg, Tardos]

Cut Sparsification

• Two problems:

– Approximating Min-Cut in the graph (up to 1 ± 𝜖)

– Preserving all cuts in the graph (up to 1 ± 𝜖)

• General cut sparsification framework:

– Sample each edge 𝑒 with probability 𝑝𝑒

– Assign sampled edges weights 1/𝑝𝑒

• Expected weight of each cut is preserved, but
too many cuts − can’t take union bound

Cut Sparsification

• For an edge 𝑒 let 𝜆𝑒 = weight of the minimum
cut that contains 𝑒

• 𝜆 = size of the Min-Cut in G

• Thm [Fung et al.]: If 𝐺 is an undirected

weighted graph the if 𝑝𝑒 ≥ min
𝐶 log2 𝑛

𝜆𝑒 𝜖
2 , 1

then the cut sparsification alg. Preserves
weights of all cuts up to (1 ± 𝜖)

• Thm [Karger]: 𝑝𝑒 ≥ min
𝐶 log 𝑛

𝜆 𝜖2 , 1 preserves

Min-Cut up to (1 ± 𝜖)

Minimum Cut

Algorithm:

• For 𝑖 = 0,1, … , 2 log 𝑛 :
– Let 𝐺𝑖 be the subgraph of 𝐺 where each edge is

sampled with probability 1/2𝑖

– Let 𝐻𝑖 = F1, … , 𝐹𝑘 where 𝑘 = 𝑂
1

𝜖2 ⋅ log 𝑛 and 𝐹𝑖 are

forests constructed by the k-connectivity alg.

• Return 2𝑗𝜆(𝐻𝑗) where 𝑗 = min *𝑖 ∶ 𝜆 𝐻𝑖 < 𝑘+

Space: 𝑂
𝑛 log4 𝑛

𝜖2 , works for dynamic graph streams

Minimum Cut: Analysis

• Key property: If 𝐺𝑖 has ≤ 𝑘 edges across a cut
then 𝐻𝑖 contains all such edges

• 𝑖∗ = logmax 1,
𝜆𝜖2

6 log 𝑛

• 𝑖 ≤ 𝑖∗ ⇒ 𝑝𝑒 ≥ min
6 log 𝑛

𝜆𝜖2 , 1 ⇒ min cut in 𝐺𝑖

is approximating min-cut in 𝐺 up to (1 ± 𝜖)

• 𝑖 = 𝑖∗: By Chernoff bound # edges in 𝐺𝑖∗ that

crosses min-cut in 𝐺 is 𝑂
1

𝜖2 log 𝑛 ≤ 𝑘 w.h.p.

Cut Sparsification

Algorithm:
• For 𝑖 = 0,1, … , 2 log 𝑛 :

– Let 𝐺𝑖 be the subgraph of 𝐺 where each edge is sampled with
probability 1/2𝑖

– Let 𝐻𝑖 = F1, … , 𝐹𝑘 where 𝑘 = 𝑂
1

𝜖2 ⋅ log2 𝑛 and 𝐹𝑖 are forests
constructed by the k-connectivity alg.

• For each edge 𝑒 let 𝑗𝑒 = min i: 𝜆𝑒 𝐻𝑖 < 𝑘 .

• If 𝑒 ∈ 𝐻𝑗𝑒 then add e to the sparsifier with weight 2𝑗𝑒

• Space: 𝑂
𝑛 log5 𝑛

𝜖2 , works for dynamic graph streams

• Analysis similar to the Min-Cut using [Fung et al.]

