CIS 700: “algorithms for Big Data”

Lecture 4: Streaming

Slides at http://grigory.us/big-data-class.html

Grigory Yaroslavtsev
http://grigory.us
\(\ell_0 \)-sampling

- Maintain \(\widetilde{F}_0 \), and \((1 \pm 0.1)\)-approximation to \(F_0 \).
- Hash items using \(h_j : [n] \to [0, 2^j - 1] \) for \(j \in [\log n] \).
- For each \(j \), maintain:
 \[D_j = (1 \pm 0.1)\left| \{ t \mid h_j(t) = 0 \} \right| \]
 \[S_j = \sum_{t, h_j(t) = 0} f_t i_t \]
 \[C_j = \sum_{t, h_j(t) = 0} f_t \]

- **Lemma**: At level \(j = 2 + \lceil \log \widetilde{F}_0 \rceil \) there is a unique element in the streams that maps to 0 (with constant probability).
- Uniqueness is verified if \(D_j = 1 \pm 0.1 \). If so, then output \(S_j / C_j \) as the index and \(C_j \) as the count.
Proof of Lemma

• Let \(j = \lceil \log F_0 \rceil \) and note that \(2F_0 < 2^j < 12F_0 \)
• For any \(i \), \(\Pr[h_j(i) = 0] = \frac{1}{2^j} \)
• Probability there exists a unique \(i \) such that \(h_j(i) = 0 \),

\[
\sum_i \Pr[h_j(i) = 0 \text{ and } \forall k \neq i, h_j(k) \neq 0]
\]

\[
= \sum_i \Pr[h_j(i) = 0] \Pr[\forall k \neq i, h_j(k) \neq 0 | h_j(i) = 0]
\]

\[
\geq \sum_i \Pr[h_j(i) = 0] \left(1 - \sum_{k \neq i} \Pr[h_j(k) = 0 | h_j(i) = 0] \right)
\]

\[
= \sum_i \Pr[h_j(i) = 0] \left(1 - \sum_{k \neq i} \Pr[h_j(k) = 0] \right) \geq \sum_i \frac{1}{2^j} \left(1 - \frac{F_0}{2^j} \right) \geq \frac{1}{24}
\]

• Holds even if \(h_j \) are only 2-wise independent
Sparse Recovery

- **Goal:** Find g such that $\|f - g\|_1$ is minimized among g's with at most k non-zero entries.
- **Definition:** $Err^k(f) = \min_{g: \|g\|_0 \leq k} \|f - g\|_1$
- **Exercise:** $Err^k(f) = \sum_{i \notin S} |f_i|$ where S are indices of k largest f_i

- Using $O(\epsilon^{-1} k \log n)$ space we can find \tilde{g} such that $\|\tilde{g}\|_0 \leq k$ and $\|\tilde{g} - f\|_1 \leq (1 + \epsilon)Err^k(f)$
Count-Min Revisited

• Use Count-Min with \(d = O(\log n), w = 4k/\epsilon \)
• For \(i \in [n] \), let \(\tilde{f}_i = c_{j,h_j(i)} \) for some row \(j \in [d] \)
• Let \(S = \{i_1, ..., i_k\} \) be the indices with max. frequencies. Let \(A_i \) be the event there doesn’t exist \(k \in S/i \) with \(h_j(i) = h_j(k) \)
• Then for \(i \in [n] \):

\[
\Pr \left[|f_i - \tilde{f}_i| \geq \frac{\epsilon \text{Err}^k(f)}{k} \right] =
\]

\[
\Pr[\text{not } A_i] \times \Pr \left[|f_i - \tilde{f}_i| \geq \frac{\epsilon \text{Err}^k(f)}{k} \middle| \text{not } A_i \right] +
\]

\[
\Pr[A_i] \times \Pr \left[|f_i - \tilde{f}_i| \geq \frac{\epsilon \text{Err}^k(f)}{k} \middle| A_i \right]
\]

\[
\leq \Pr[\text{not } A_i] + \Pr \left[|f_i - \tilde{f}_i| \geq \frac{\epsilon \text{Err}^k(f)}{k} \middle| A_i \right] \leq \frac{k}{w} + \frac{1}{4} \leq \frac{1}{2}
\]

• Because \(d = O(\log n) \) w.h.p. all \(f_i \)’s approx. up to \(\frac{\epsilon \text{Err}^k(f)}{k} \)
Sparse Recovery Algorithm

- Use Count-Min with $d = O(\log n)$, $w = 4k/\epsilon$
- Let $f' = (\tilde{f}_1, \tilde{f}_2, \ldots, \tilde{f}_n)$ be frequency estimates:
 \[|f_i - \tilde{f}_i| \leq \frac{\epsilon \text{Err}^k(f)}{k} \]
- Let \tilde{g} be f' with all but the k-th largest entries replaced by 0.
- Lemma: $\|\tilde{g} - f\|_1 \leq (1 + 3\epsilon)\text{Err}^k(f)$
\[\| \tilde{g} - f \|_1 \leq (1 + 3 \epsilon) \text{Err}^k(f) \]

- Let \(S, T \subseteq [n] \) be indices corresponding to \(k \) largest values of \(f \) and \(f' \).
- For a vector \(x \in \mathbb{R}^n \) and \(I \subseteq [n] \) denote as \(x_I \) the vector formed by zeroing out all entries of \(x \) except for those in \(I \).

\[
\| f - f'_T \|_1 \leq \| f - f_T \|_1 + \| f_T - f'_T \|_1 \\
= \| f \|_1 - \| f_T \|_1 + \| f_T - f'_T \|_1 \\
= \| f \|_1 - \| f'_T \|_1 + (\| f'_T \|_1 - \| f_T \|_1) + \| f_T - f'_T \|_1 \\
\leq \| f \|_1 - \| f'_T \|_1 + 2 \| f_T - f'_T \|_1 \\
\leq \| f \|_1 - \| f'_S \|_1 + 2 \| f_T - f'_T \|_1 \\
\leq \| f - f_S \|_1 + (\| f_S \|_1 - \| f'_S \|_1) + 2 \| f_T - f'_T \|_1 \\
\leq \| f - f_S \|_1 + \| f_S - f'_S \|_1 + 2 \| f_T - f'_T \|_1 \\
\leq \text{Err}^k(f) + k \epsilon \frac{\text{Err}^k(f)}{k} + 2k \epsilon \frac{\text{Err}^k(f)}{k} \\
\leq (1 + 3 \epsilon) \text{Err}^k(f) \]
Count Sketch [Charikar, Chen, Farach-Colton]

• In addition to $H_i: [n] \rightarrow [w]$ use random signs $r_i[n] \rightarrow \{-1,1\}$

$$c_{i,j} = \sum_{x: H_i(x) = j} r_i(x)f_x$$

• Estimate:

$$\hat{f}_x = \text{median}(r_1(x)c_{1,H_1(x)}, \ldots, r_d(x)c_{d,H_d(x)})$$

• Parameters: $d = O\left(\log \frac{1}{\delta}\right)$, $w = \frac{3}{\epsilon^2}$

$$\Pr[|\hat{f}_x - f_x| + \epsilon||f||_2] \geq 1 - \delta$$

• Lemma: $E[r_i(x)c_{i,H_i(x)}] = f_x$

• Lemma: $\text{Var}[r_i(x)c_{i,H_i(x)}] \leq \frac{F_2}{w}$

• By Chebyshev: $\Pr[|r_i(x)c_{i,H_i(x)} - f_x| \geq \epsilon\sqrt{F_2}] \leq 1/3$

• By Chernoff with $d = O\left(\log \frac{1}{\delta}\right)$ error prob. $1 - \delta$.
Count Sketch Analysis

• Fix i and x. Let $X_y = I[H(x) = H(y)]:$

$$r(x) C_{H(x)} = \sum_y r(x) r(y) f_y X_y$$

• Lemma: $E[r_i(x)c_{i,H_i(x)}] = f_x$

$$E[r(x)C_{H(x)}] = E[f_x + \sum_{y \neq x} r(x)r(y)f(y)X_y] = f_x$$

• Lemma: $\text{Var}[r_i(x)c_{i,H_i(x)}] \leq \frac{F_2}{w}$

$$\text{Var}[r(x)C_{H(x)}] \leq E\left[(\sum_y r(x)r(y)f_y X_y)^2\right]$$

$$= E\left[\sum_y f_y^2 X_y^2 + (\sum_{y \neq z} r(y)r(z)f_y f_z X_y X_z)\right]$$

$$= \frac{F_2}{w}$$