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Count-Min Sketch 

• https://sites.google.com/site/countminsketch/ 
• Stream: 𝒎 elements from universe 𝒏 =

*1, 2, … , 𝒏+, e.g. 
𝑥1, 𝑥2, … , 𝑥𝒎 = 〈5, 8, 1, 1, 1, 4, 3, 5, … , 10〉 

• 𝑓𝑖  = frequency of 𝑖 in the stream = # of 
occurrences of value 𝑖, 𝑓 = 〈𝑓1, … , 𝑓𝒏〉 

• Problems: 
– Point Query: For 𝑖 ∈ 𝑛  estimate 𝑓𝑖 

– Range Query: For 𝑖, 𝑗 ∈ ,𝑛- estimate 𝑓𝑖 + ⋯ + 𝑓𝑗 
– Quantile Query: For 𝜙 ∈ ,0,1- find 𝑗 with 𝑓1 + ⋯ +

𝑓𝑗 ≈ 𝜙𝑚 
– Heavy Hitters: For 𝜙 ∈ ,0,1- find all 𝑖 with 𝑓𝑖 ≥ 𝜙𝑚 

 

https://sites.google.com/site/countminsketch/
https://sites.google.com/site/countminsketch/


Count-Min Sketch: Construction 

• Let 𝐻1, … , 𝐻𝑑: 𝑛 → ,𝑤- be 2-wise 
independent hash functions 

• We maintain 𝑑 ⋅ 𝑤 counters with values: 

𝑐𝑖,𝑗 = # elements 𝑒 in the stream with 𝐻𝑖 𝑒 = 𝑗 

• For every 𝑥 the value 𝑐𝑖,𝐻𝑖(𝑥) ≥ 𝑓𝑥 and so: 

𝑓𝑥 ≤ 𝑓𝑥 = min⁡(𝑐1,𝐻1 𝑥 , … , 𝑐𝑑,𝐻𝑑 𝑥 ) 

• If 𝑤 =
2

𝜖
  and 𝑑 = log2

1

𝛿
⁡  then: 

Pr 𝑓𝑥 ≤ 𝑓𝑥 ≤ 𝑓𝑥 + 𝜖𝑚 ≥ 1⁡ − 𝛿. 



Count-Min Sketch: Analysis 

• Define random variables 𝒁1 … , 𝒁𝑑 such that 𝑐𝑖,𝐻𝑖(𝑥) = 𝑓𝑥 + 𝒁𝑖 

𝒁𝑖 =  𝑓𝑦
𝑦≠𝑥,𝐻𝑖 𝑦 =𝐻𝑖(𝑥)

 

• Define 𝑿𝑖,𝑦 = 1 if 𝐻𝑖 𝑦 = 𝐻𝑖(𝑥) and 0 otherwise: 

𝒁𝑖 =  𝑓𝑦𝑿𝑖,𝑦

𝑦≠𝑥

 

• By 2-wise independence: 

𝔼 𝒁𝑖 =  𝑓𝑦𝑦≠𝑥  𝔼 𝑿𝑖,𝑦 =  𝑓𝑦𝑦≠𝑥 Pr 𝐻𝑖 𝑦 = 𝐻𝑖 𝑥 ≤
𝑚

𝑤
 

• By Markov inequality, 

Pr 𝒁𝑖 ≥ 𝜖𝑚 ≤
1

𝑤⁡𝜖
=

1

2
 

 



Count-Min Sketch: Analysis 

• All 𝑍𝑖 are independent  

Pr 𝑍𝑖 ≥ 𝜖𝑚⁡⁡⁡𝑓𝑜𝑟⁡𝑎𝑙𝑙⁡⁡⁡⁡1 ≤ 𝑖 ≤ 𝑑⁡ ≤
1

2

𝑑

= 𝛿 

• With prob.⁡1⁡ − 𝛿 there exists 𝑗 such that 𝑍𝑗 ≤ 𝜖𝑚 

𝑓𝑥 = min 𝑐1,𝐻1 𝑥 , … , 𝑐𝑑,𝐻𝑑 𝑥 = 

= min 𝑓𝑥 , +𝑍1 ⁡… , 𝑓𝑥 + 𝑍𝑑 ≤ 𝑓𝑥 + 𝜖𝑚 

• CountMin estimates values 𝑓𝑥 up to ±𝜖𝑚 with total 

memory 𝑂
log⁡𝑚 log

1

𝛿

𝜖
` 



Dyadic Intervals 

• Define log 𝑛 partitions of 𝑛 : 
𝐼0 = 1,2,3, … 𝑛  

𝐼1 = 1,2 , 3,4 , … , 𝑛 − 1, 𝑛  

𝐼2 = * 1,2,3,4 , 5,6,7,8 , … , *𝑛 − 3, 𝑛 − 2, 𝑛 − 1, 𝑛++ 

… 
Ilog⁡n = **1, 2,3, … , 𝑛++  

 

• Exercise:  Any interval (𝑖, 𝑗) can be written as a disjoint 
union of at most 2 log 𝑛⁡such intervals. 

• Example: For 𝑛 = 256:⁡ 48,107 = 48,48 ∪ 49,64 ∪
65,96 ∪ 97,104 ∪ 105,106 ∪ 107,107   

 



Count-Min: Range Queries and Quantiles 

• Range Query: For 𝑖, 𝑗 ∈ ,𝑛- estimate 𝑓𝑖 + ⋯ 𝑓𝑗  

• Approximate median: Find 𝑗 such that: 

𝑓1 + ⋯ + 𝑓𝑗 ≥
𝑚

2
+ 𝜖𝑚 and 

𝑓1 + ⋯ + 𝑓𝑗−1 ≤
𝑚

2
− 𝜖𝑚⁡ 

 

 



Count-Min: Range Queries and Quantiles 

• Algorithm: Construct log 𝑛 Count-Min sketches, 
one for each 𝐼𝑖  such that for any 𝐼 ∈ 𝐼𝑖 we have 

an estimate 𝑓 𝑙 ⁡for 𝑓𝑙  such that: 

Pr 𝑓𝑙 ≤ 𝑓𝑙
 ≤ 𝑓𝑙 + 𝜖𝑚 ≥ 1 − 𝛿 

• To estimate 𝑖, 𝑗 , let 𝐼1 … , 𝐼𝑘 be decomposition: 

𝑓,𝑖,𝑗-
 = 𝑓𝑙1

 + ⋯ + 𝑓𝑙𝑘
  

• Hence,  

Pr 𝑓 𝑖,𝑗 ≤ 𝑓 𝑖,𝑗
 ≤ 2⁡𝜖𝑚 log 𝑛 ≥ 1⁡ − 2𝛿 log 𝑛 

 

 



Count-Min: Heavy Hitters 

• Heavy Hitters: For 𝜙 ∈ ,0,1- find all 𝑖 with 𝑓𝑖 ≥ 𝜙𝑚 
but no elements with 𝑓𝑖 ≤ (𝜙⁡ − 𝜖)𝑚 

• Algorithm: 
– Consider binary tree whose leaves are [n] and 

associate internal nodes with intervals 
corresponding to descendant leaves 

– Compute Count-Min sketches for each 𝐼𝑖  

– Level-by-level from root, mark children 𝐼 of 
marked nodes if 𝑓𝑙

 ≥ 𝜙𝑚⁡ 

– Return all marked leaves 

• Finds heavy-hitters in 𝑂(𝜙−1 log 𝑛) steps 
 



More about Count-Min  

• Authors: Graham Cormode, S. Muthukrishnan [LATIN’04] 

• Count-Min is linear: 

Count-Min(S1 + S2) = Count-Min(S1) + Count-Min(S2)  

 

• Deterministic version: CR-Precis 

• Count-Min vs. Bloom filters 
– Allows to approximate values, not just 0/1 (set membership) 

– Doesn’t require mutual independence (only 2-wise) 

• FAQ and Applications:  
– https://sites.google.com/site/countminsketch/home/ 

– https://sites.google.com/site/countminsketch/home/faq 

 

https://sites.google.com/site/countminsketch/home/
https://sites.google.com/site/countminsketch/home/faq


Fully Dynamic Streams 

• Stream: 𝒎 updates 𝑥𝑖 , Δ𝑖 ∈ 𝑛 × ℝ that define vector 𝑓 
where 𝑓𝑗 =  Δ𝑖𝑖:𝑥𝑖=𝑗 .  

• Example: For 𝑛 = 4 
 

〈 1,3 , 3, 0.5 , 1,2 , 2, −2 , 2,1 , 1, −1 , (4,1)〉 
𝑓 = (4, −1, 0.5, 1) 

• Count-Min Sketch: 

Pr |𝑓𝑥 − 𝑓𝑥| + 𝜖 𝑓
1

≥ 1⁡ − 𝛿 

• Count Sketch: Count-Min with random signs and 
median instead of min:  

Pr |𝑓𝑥 − 𝑓𝑥| + 𝜖 𝑓
2

≥ 1⁡ − 𝛿 

 



Count Sketch 

• In addition to 𝐻𝑖: 𝑛 → ,𝑤- use random signs 
𝑟 𝑖 → −1,1  

𝑐𝑖,𝑗 =  𝑟𝑖 𝑥 𝑓𝑥
𝑥:𝐻𝑖 𝑥 =𝑗

 

• Estimate:  
𝑓 𝑥 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑟1(𝑥)𝑐1,𝐻1 𝑥 , … , 𝑟𝑑 𝑥 𝑐𝑑,𝐻𝑑(𝑥)) 

• Parameters: 𝑑 = 𝑂 log
1

𝛿⁡
, 𝑤 =

3

𝜖𝟐 

Pr |𝑓𝑥 − 𝑓𝑥| + 𝜖| 𝑓 |2 ≥ 1⁡ − 𝛿 

 



ℓ𝑝-Sampling 

• Stream: 𝒎 updates 𝑥𝑖 , Δ𝑖 ∈ 𝑛 × ℝ that 
define vector 𝑓 where 𝑓𝑗 =  Δ𝑖𝑖:𝑥𝑖=𝑗 .  

• ℓ𝑝-Sampling: Return random 𝐼 ∈ ,𝑛- and 𝑅 ∈ ℝ: 

Pr 𝐼 = 𝑖 = 1 ± 𝜖
𝑓𝑖

𝑝

𝑓
𝑝

𝑝 + 𝑛−𝑐    

𝑅 = 1 ± 𝜖 𝑓𝐼  



Application: Social Networks 

• Each of 𝑛 people in a social network is friends 
with some arbitrary set of other 𝑛 − 1 people 

• Each person knows only about their friends 

• With no communication in the network, each 
person sends a postcard to Mark Z. 

• If Mark wants to know if the graph is 
connected, how long should the postcards be? 



Optimal 𝐹𝑘 estimation 

• Last time: (𝜖, 𝛿)-approximate 𝐹𝑘   
– 𝑂 (𝑛1−1/𝑘) space for 𝐹𝑘 =  𝑓𝑖

𝑘
𝑖  

– 𝑂 (log 𝑛) space for 𝐹2 

• New algorithm: Let (𝐼, 𝑅) be an ℓ2-sample. 
Return 𝑇 = 𝐹2

 𝑅𝑘−2,  where 𝐹2
  is an 𝑒±𝜖 estimate of 𝐹2 

• Expectation: 

𝔼 𝑇 = 𝐹2
  𝑃𝑟

𝑖

𝐼 = 𝑖 𝑒±𝜖𝑓𝑖
𝑘−2

= 𝑒±𝜖𝑘𝐹2  
𝑓𝑖

2

𝐹2
𝑓𝑖

𝑘−2 = 𝑒±𝜖𝑘𝐹𝑘

𝑖∈,𝑛-

 



Optimal 𝐹𝑘 estimation 

• New algorithm: Let (𝐼, 𝑅) be an ℓ2-sample. 
Return 𝑇 = 𝐹2

 𝑅𝑘−2,  where 𝐹2
  is an 𝑒±𝜖 estimate of 𝐹2 

• Variance: 

𝑉𝑎𝑟 𝑇 ≤ 𝔼 𝑇2 =  𝑃𝑟

𝑖

𝐼 = 𝑖 𝔼 𝑇2|𝐼 = 𝑖

= 𝑒±2𝜖𝑘  
𝑓𝑖

2

𝐹2
𝐹2

2𝑓𝑖
2 𝑘−2

= 𝑒±2𝜖𝑘𝐹2𝐹2𝑘−2 ≤ 𝑒±2⁡𝜖𝑘

𝑖∈ 𝑛

𝑛1−
2
𝑘𝐹𝑘

2 

• Exercise: Show that 𝐹2𝐹2𝑘−2⁡ ≤ 𝑛1−
2

𝑘⁡𝐹𝑘
2 

• Overall: 𝔼 𝑇 = 𝑒±𝜖𝑘𝐹𝑘 , 𝑉𝑎𝑟 𝑇 ≤ 𝑒±2⁡𝜖𝑘⁡𝑛1−
2

𝑘𝐹𝑘
2 

– Apply average + median to 𝑂 𝑛1−
2

𝑘⁡𝜖−2 log 𝛿−1  copies 



ℓ2-Sampling: Basic Overview 

• Assume 𝐹2 𝑓 = 1. Weight 𝑓𝑖  by 𝑤𝑖 =
1

𝑢𝑖
⁡ , where 𝑢𝑖 ∈𝑅 0,1 : 

𝑓 = 𝑓1, 𝑓2, … , 𝑓𝑛  

𝑔 = (𝑔1, 𝑔2, … , 𝑔𝑛) where 𝑔𝑖 = 𝑤𝑖𝑓𝑖 

• For some value 𝑡, return 𝑖, 𝑓𝑖  if there is a unique 𝑖 such that 𝑔𝑖
2 ≥ 𝑡 

 
• Probability (𝑖, 𝑓𝑖) is returned if 𝑡 is large enough: 

Pr 𝑔𝑖
2 ≥ 𝑡⁡⁡𝑎𝑛𝑑⁡∀𝑗 ≠ 𝑖, 𝑔𝑗

2 < 𝑡 = Pr 𝑔𝑖
2 ≥ 𝑡  𝑃𝑟 𝑔𝑗

2 < 𝑡

𝑗≠𝑖

 

= Pr 𝑢𝑖 ≤
𝑓𝑖

2

𝑡
⁡ Pr 𝑢𝑗 >

𝑓𝑗
2

𝑡
𝑗≠𝑖

≈
𝑓𝑖

2

𝑡
 

• Probability some value is returned  
𝑓𝑖

2

𝑡𝑖 =
1

𝑡
, repeat 𝑂 𝑡 log

1

𝛿
 times. 



ℓ2-Sampling: Part 1 

• Use Count-Sketch with parameters (𝑚, 𝑑) to sketch 𝑔 

• To estimate 𝑓𝑖
2:  

𝑔𝑖
2 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑗 𝑐𝑗,𝑕𝑗 𝑖

2    and   𝑓𝑖
2 =

𝑔𝑖
2 

𝑤𝑖
 

• Lemma: With high probability if 𝑑 = 𝑂 log 𝑛  

𝑔𝑖
2 = 𝑔𝑖

2𝑒±𝜖 ± 𝑂
𝐹2 𝑔

𝜖𝑚
 

• Corollary: With high probability if 𝑑 = 𝑂 log 𝑛  and 

𝑚 ≫
𝐹2 𝑔

𝜖
, 

𝑓𝑖
2 = 𝑓𝑖

2𝑒±𝜖 ±
1

𝑤𝑖
 

• Exercise: Pr 𝐹2 𝑔 ≤ 𝑐 log 𝑛 ≤
99

100
 for large 𝑐 > 0. 



Proof of Lemma 
• Let 𝑐𝑗 = 𝑟𝑗 𝑖 𝑔𝑖 + 𝑍𝑗 

• By the analysis of Count Sketch 𝔼 𝑍𝑗
2 ≤

𝐹2(𝑔)

𝑚
 and by Markov: 

Pr 𝑍𝑗
2 ≤

3𝐹2 𝑔

𝑚
≥

2

3
 

• If 𝑔𝑖 ≥
2

𝜖
𝑍𝑗 , then 𝑐𝑗,𝑕𝑗 𝑖

2
⁡= 𝑒±𝜖 𝑔𝑖

2 

• If 𝑔𝑖 ≤
2

𝜖
𝑍𝑗 , then 

𝑐𝑗,𝑕𝑗 𝑖
2 ≤ 𝑔𝑖 + 𝑍𝑗

2
− 𝑔𝑖

2 = 𝑍𝑗
2

+ 2⁡ 𝑔𝑖𝑍𝑗 ≤
6 𝑍𝑗

2

𝜖
≤ 18

𝐹2 𝑔

𝜖𝑚
 

where the last inequality holds with probability 2/3 
 

• Take median over 𝑑 = 𝑂(log 𝑛) repetitions ⇒⁡high probability 



ℓ2-Sampling: Part 2 

• Let 𝑠𝑖 = 1 if 𝑓𝑖
 2

𝑤𝑖 ≥
4

𝜖
 and 𝑠𝑖 = 0 otherwise 

• If there is a unique 𝑖 with 𝑠𝑖 = 1 then return 𝑖, 𝑓𝑖
 2

. 

• Note that if 𝑓𝑖
 2

𝑤𝑖 ≥
4

𝜖
 then 

1

𝑤𝑖
≤

𝜖𝑓𝑖
 2

4
 and so 

𝑓𝑖
 2

= 𝑓𝑖
2𝑒±𝜖 ±

1

𝑤𝑖
= 𝑓𝑖

2⁡𝑒±𝜖 ±
𝜖𝑓𝑖
 2

4
, 

therefore 𝑓𝑖
2 = 𝑒±4𝜖⁡𝑓𝑖

 2
 

 
• Lemma: With probability Ω(𝜖) there is a unique 𝑖 such 

that s𝑖 = 1. If so then Pr 𝑖 = 𝑖∗ = 𝑒±8⁡𝜖𝑓𝑖∗
2 

• Thm: Repeat Ω 𝜖−1 log 𝑛  times. Space: 𝑂(𝜖−2𝑝𝑜𝑙𝑦𝑙𝑜𝑔⁡𝑛)  



Proof of Lemma 

• Let t =
4

𝜖
. We can upper-bound Pr 𝑠𝑖 = 1 : 

Pr 𝑠𝑖 = 1 = Pr 𝑓𝑖
 2

𝑤𝑖 ≥ 𝑡 ≤ Pr
𝑒4𝜖𝑓𝑖

2

𝑡
≥ 𝑢𝑖 ≤

𝑒4𝜖𝑓𝑖
2

𝑡
 

Similarly, Pr 𝑠𝑖 = 1 ≥
𝑒−4𝜖𝑓𝑖

2

𝑡
. 

• Using independence of 𝑤𝑖, probability of unique 𝑖 with 𝑠𝑖 = 1: 

 Pr 𝑠𝑖 = 1,  𝑠𝑗 = 0

𝑗≠𝑖

≥  Pr 𝑠𝑖 = 1 1⁡ −  Pr 𝑠𝑗 = 1⁡

𝑗≠𝑖𝑖𝑖

 

≥  
𝑒−4𝜖𝑓𝑖

2

𝑡
𝑖

1⁡ −
 𝑒4𝜖

𝑗≠𝑖 𝑓𝑖
2

𝑡
⁡ 

≥
𝑒−4𝜖 1⁡ −

𝑒4𝜖

𝑡

𝑡
≈ 1/𝑡 

 



Proof of Lemma 

• Let t =
4

𝜖
. We can upper-bound Pr 𝑠𝑖 = 1 : 

Pr 𝑠𝑖 = 1 = Pr 𝑓𝑖
 2

𝑤𝑖 ≥ 𝑡 ≤ Pr
𝑒4𝜖𝑓𝑖

2

𝑡
≥ 𝑢𝑖 ≤

𝑒4𝜖𝑓𝑖
2

𝑡
 

Similarly, Pr 𝑠𝑖 = 1 ≥
𝑒−4𝜖𝑓𝑖

2

𝑡
. 

• We just showed: 

 Pr 𝑠𝑖 = 1,  𝑠𝑗 = 0

𝑗≠𝑖𝑖

≈ 1/𝑡 

• If there is a unique i, probability 𝑖 = 𝑖∗ is: 
Pr⁡,𝑠𝑖∗ = 1,  𝑠𝑗 = 0𝑗≠𝑖 -

 Pr 𝑠𝑖 = 1,  𝑠𝑗 = 0𝑗≠𝑖𝑖

= 𝑒±8𝜖𝑓𝑖∗
2 

 



ℓ0-sampling 

• Maintain 𝐹0
 , and 1 ± 0.1 -approximation to 𝐹0. 

• Hash items using 𝑕𝑗: 𝑛 → 0,2𝑗 − 1  for 𝑗 ∈ log 𝑛  
• For each 𝑗, maintain: 

𝐷𝑗 = 1 ± 0.1 |*𝑡|𝑕𝑗 𝑡 = 0+| 

𝑆𝑗 =  𝑓𝑡𝑖𝑡
𝑡,𝑕𝑗 𝑡 =0

 

𝐶𝑗 =  𝑓𝑡

𝑡,𝑕𝑗 𝑡 =0

⁡ 

• Lemma: At level 𝑗 = 2 + ⌈log 𝐹0
 ⌉ there is a unique element 

in the streams that maps to 0 (with constant probability) 

• Uniqueness is verified if 𝐷𝑗 = 1 ± 0.1. If so, then output 
𝑆𝑗/𝐶𝑗 as the index and 𝐶𝑗  as the count. 
 



Proof of Lemma 

• Let 𝑗 = ⌈log 𝐹0
 ⌉ and note that 2𝐹0 < 2𝑗 < 12⁡𝐹0 

• For any 𝑖, Pr 𝑕𝑗 𝑖 = 0 =
1

2𝑗 

• Probability there exists a unique 𝑖 such that 𝑕𝑗 𝑖 = 0, 

 Pr 𝑕𝑗 𝑖 = 0⁡𝑎𝑛𝑑⁡∀𝑘 ≠ 𝑖, 𝑕𝑗 𝑘 ≠ 0

𝑖

 

=  Pr 𝑕𝑗 𝑖 = 0 Pr ∀𝑘 ≠ 𝑖, 𝑕𝑗 𝑘 ≠ 0 𝑕𝑗 𝑖 = 0-

𝑖

 

≥  Pr 𝑕𝑗 𝑖 = 0 1 −  Pr 𝑕𝑗 𝑘 = 0 𝑕𝑗 𝑖 = 0

𝑘≠𝑖𝑖

 

=  Pr 𝑕𝑗 𝑖 = 0 1⁡ −  Pr 𝑕𝑗 𝑘 = 0

𝑘≠𝑖𝑖

≥  
1

2𝑗
1⁡ −

𝐹0

2𝑗
≥

1

24
𝑖

 

• Holds even if 𝑕𝑗  are only 2-wise independent  


