
CIS 700:
“algorithms for Big Data”

Grigory Yaroslavtsev
http://grigory.us

Lecture 3: Streaming
Slides at http://grigory.us/big-data-class.html

http://grigory.us/
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html

Count-Min Sketch

• https://sites.google.com/site/countminsketch/
• Stream: 𝒎 elements from universe 𝒏 =

*1, 2, … , 𝒏+, e.g.
𝑥1, 𝑥2, … , 𝑥𝒎 = 〈5, 8, 1, 1, 1, 4, 3, 5, … , 10〉

• 𝑓𝑖 = frequency of 𝑖 in the stream = # of
occurrences of value 𝑖, 𝑓 = 〈𝑓1, … , 𝑓𝒏〉

• Problems:
– Point Query: For 𝑖 ∈ 𝑛 estimate 𝑓𝑖

– Range Query: For 𝑖, 𝑗 ∈ ,𝑛- estimate 𝑓𝑖 + ⋯ + 𝑓𝑗
– Quantile Query: For 𝜙 ∈ ,0,1- find 𝑗 with 𝑓1 + ⋯ +

𝑓𝑗 ≈ 𝜙𝑚
– Heavy Hitters: For 𝜙 ∈ ,0,1- find all 𝑖 with 𝑓𝑖 ≥ 𝜙𝑚

https://sites.google.com/site/countminsketch/
https://sites.google.com/site/countminsketch/

Count-Min Sketch: Construction

• Let 𝐻1, … , 𝐻𝑑: 𝑛 → ,𝑤- be 2-wise
independent hash functions

• We maintain 𝑑 ⋅ 𝑤 counters with values:

𝑐𝑖,𝑗 = # elements 𝑒 in the stream with 𝐻𝑖 𝑒 = 𝑗

• For every 𝑥 the value 𝑐𝑖,𝐻𝑖(𝑥) ≥ 𝑓𝑥 and so:

𝑓𝑥 ≤ 𝑓𝑥 = min⁡(𝑐1,𝐻1 𝑥 , … , 𝑐𝑑,𝐻𝑑 𝑥)

• If 𝑤 =
2

𝜖
 and 𝑑 = log2

1

𝛿
⁡ then:

Pr 𝑓𝑥 ≤ 𝑓𝑥 ≤ 𝑓𝑥 + 𝜖𝑚 ≥ 1⁡ − 𝛿.

Count-Min Sketch: Analysis

• Define random variables 𝒁1 … , 𝒁𝑑 such that 𝑐𝑖,𝐻𝑖(𝑥) = 𝑓𝑥 + 𝒁𝑖

𝒁𝑖 = 𝑓𝑦
𝑦≠𝑥,𝐻𝑖 𝑦 =𝐻𝑖(𝑥)

• Define 𝑿𝑖,𝑦 = 1 if 𝐻𝑖 𝑦 = 𝐻𝑖(𝑥) and 0 otherwise:

𝒁𝑖 = 𝑓𝑦𝑿𝑖,𝑦

𝑦≠𝑥

• By 2-wise independence:

𝔼 𝒁𝑖 = 𝑓𝑦𝑦≠𝑥 𝔼 𝑿𝑖,𝑦 = 𝑓𝑦𝑦≠𝑥 Pr 𝐻𝑖 𝑦 = 𝐻𝑖 𝑥 ≤
𝑚

𝑤

• By Markov inequality,

Pr 𝒁𝑖 ≥ 𝜖𝑚 ≤
1

𝑤⁡𝜖
=

1

2

Count-Min Sketch: Analysis

• All 𝑍𝑖 are independent

Pr 𝑍𝑖 ≥ 𝜖𝑚⁡⁡⁡𝑓𝑜𝑟⁡𝑎𝑙𝑙⁡⁡⁡⁡1 ≤ 𝑖 ≤ 𝑑⁡ ≤
1

2

𝑑

= 𝛿

• With prob.⁡1⁡ − 𝛿 there exists 𝑗 such that 𝑍𝑗 ≤ 𝜖𝑚

𝑓𝑥 = min 𝑐1,𝐻1 𝑥 , … , 𝑐𝑑,𝐻𝑑 𝑥 =

= min 𝑓𝑥 , +𝑍1 ⁡… , 𝑓𝑥 + 𝑍𝑑 ≤ 𝑓𝑥 + 𝜖𝑚

• CountMin estimates values 𝑓𝑥 up to ±𝜖𝑚 with total

memory 𝑂
log⁡𝑚 log

1

𝛿

𝜖
`

Dyadic Intervals

• Define log 𝑛 partitions of 𝑛 :
𝐼0 = 1,2,3, … 𝑛

𝐼1 = 1,2 , 3,4 , … , 𝑛 − 1, 𝑛

𝐼2 = * 1,2,3,4 , 5,6,7,8 , … , *𝑛 − 3, 𝑛 − 2, 𝑛 − 1, 𝑛++

…
Ilog⁡n = **1, 2,3, … , 𝑛++

• Exercise: Any interval (𝑖, 𝑗) can be written as a disjoint
union of at most 2 log 𝑛⁡such intervals.

• Example: For 𝑛 = 256:⁡ 48,107 = 48,48 ∪ 49,64 ∪
65,96 ∪ 97,104 ∪ 105,106 ∪ 107,107

Count-Min: Range Queries and Quantiles

• Range Query: For 𝑖, 𝑗 ∈ ,𝑛- estimate 𝑓𝑖 + ⋯ 𝑓𝑗

• Approximate median: Find 𝑗 such that:

𝑓1 + ⋯ + 𝑓𝑗 ≥
𝑚

2
+ 𝜖𝑚 and

𝑓1 + ⋯ + 𝑓𝑗−1 ≤
𝑚

2
− 𝜖𝑚⁡

Count-Min: Range Queries and Quantiles

• Algorithm: Construct log 𝑛 Count-Min sketches,
one for each 𝐼𝑖 such that for any 𝐼 ∈ 𝐼𝑖 we have

an estimate 𝑓 𝑙 ⁡for 𝑓𝑙 such that:

Pr 𝑓𝑙 ≤ 𝑓𝑙
 ≤ 𝑓𝑙 + 𝜖𝑚 ≥ 1 − 𝛿

• To estimate 𝑖, 𝑗 , let 𝐼1 … , 𝐼𝑘 be decomposition:

𝑓,𝑖,𝑗-
 = 𝑓𝑙1

 + ⋯ + 𝑓𝑙𝑘

• Hence,

Pr 𝑓 𝑖,𝑗 ≤ 𝑓 𝑖,𝑗
 ≤ 2⁡𝜖𝑚 log 𝑛 ≥ 1⁡ − 2𝛿 log 𝑛

Count-Min: Heavy Hitters

• Heavy Hitters: For 𝜙 ∈ ,0,1- find all 𝑖 with 𝑓𝑖 ≥ 𝜙𝑚
but no elements with 𝑓𝑖 ≤ (𝜙⁡ − 𝜖)𝑚

• Algorithm:
– Consider binary tree whose leaves are [n] and

associate internal nodes with intervals
corresponding to descendant leaves

– Compute Count-Min sketches for each 𝐼𝑖

– Level-by-level from root, mark children 𝐼 of
marked nodes if 𝑓𝑙

 ≥ 𝜙𝑚⁡

– Return all marked leaves

• Finds heavy-hitters in 𝑂(𝜙−1 log 𝑛) steps

More about Count-Min

• Authors: Graham Cormode, S. Muthukrishnan [LATIN’04]

• Count-Min is linear:

Count-Min(S1 + S2) = Count-Min(S1) + Count-Min(S2)

• Deterministic version: CR-Precis

• Count-Min vs. Bloom filters
– Allows to approximate values, not just 0/1 (set membership)

– Doesn’t require mutual independence (only 2-wise)

• FAQ and Applications:
– https://sites.google.com/site/countminsketch/home/

– https://sites.google.com/site/countminsketch/home/faq

https://sites.google.com/site/countminsketch/home/
https://sites.google.com/site/countminsketch/home/faq

Fully Dynamic Streams

• Stream: 𝒎 updates 𝑥𝑖 , Δ𝑖 ∈ 𝑛 × ℝ that define vector 𝑓
where 𝑓𝑗 = Δ𝑖𝑖:𝑥𝑖=𝑗 .

• Example: For 𝑛 = 4

〈 1,3 , 3, 0.5 , 1,2 , 2, −2 , 2,1 , 1, −1 , (4,1)〉
𝑓 = (4, −1, 0.5, 1)

• Count-Min Sketch:

Pr |𝑓𝑥 − 𝑓𝑥| + 𝜖 𝑓
1

≥ 1⁡ − 𝛿

• Count Sketch: Count-Min with random signs and
median instead of min:

Pr |𝑓𝑥 − 𝑓𝑥| + 𝜖 𝑓
2

≥ 1⁡ − 𝛿

Count Sketch

• In addition to 𝐻𝑖: 𝑛 → ,𝑤- use random signs
𝑟 𝑖 → −1,1

𝑐𝑖,𝑗 = 𝑟𝑖 𝑥 𝑓𝑥
𝑥:𝐻𝑖 𝑥 =𝑗

• Estimate:
𝑓 𝑥 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑟1(𝑥)𝑐1,𝐻1 𝑥 , … , 𝑟𝑑 𝑥 𝑐𝑑,𝐻𝑑(𝑥))

• Parameters: 𝑑 = 𝑂 log
1

𝛿⁡
, 𝑤 =

3

𝜖𝟐

Pr |𝑓𝑥 − 𝑓𝑥| + 𝜖| 𝑓 |2 ≥ 1⁡ − 𝛿

ℓ𝑝-Sampling

• Stream: 𝒎 updates 𝑥𝑖 , Δ𝑖 ∈ 𝑛 × ℝ that
define vector 𝑓 where 𝑓𝑗 = Δ𝑖𝑖:𝑥𝑖=𝑗 .

• ℓ𝑝-Sampling: Return random 𝐼 ∈ ,𝑛- and 𝑅 ∈ ℝ:

Pr 𝐼 = 𝑖 = 1 ± 𝜖
𝑓𝑖

𝑝

𝑓
𝑝

𝑝 + 𝑛−𝑐

𝑅 = 1 ± 𝜖 𝑓𝐼

Application: Social Networks

• Each of 𝑛 people in a social network is friends
with some arbitrary set of other 𝑛 − 1 people

• Each person knows only about their friends

• With no communication in the network, each
person sends a postcard to Mark Z.

• If Mark wants to know if the graph is
connected, how long should the postcards be?

Optimal 𝐹𝑘 estimation

• Last time: (𝜖, 𝛿)-approximate 𝐹𝑘
– 𝑂 (𝑛1−1/𝑘) space for 𝐹𝑘 = 𝑓𝑖

𝑘
𝑖

– 𝑂 (log 𝑛) space for 𝐹2

• New algorithm: Let (𝐼, 𝑅) be an ℓ2-sample.
Return 𝑇 = 𝐹2

 𝑅𝑘−2, where 𝐹2
 is an 𝑒±𝜖 estimate of 𝐹2

• Expectation:

𝔼 𝑇 = 𝐹2
 𝑃𝑟

𝑖

𝐼 = 𝑖 𝑒±𝜖𝑓𝑖
𝑘−2

= 𝑒±𝜖𝑘𝐹2
𝑓𝑖

2

𝐹2
𝑓𝑖

𝑘−2 = 𝑒±𝜖𝑘𝐹𝑘

𝑖∈,𝑛-

Optimal 𝐹𝑘 estimation

• New algorithm: Let (𝐼, 𝑅) be an ℓ2-sample.
Return 𝑇 = 𝐹2

 𝑅𝑘−2, where 𝐹2
 is an 𝑒±𝜖 estimate of 𝐹2

• Variance:

𝑉𝑎𝑟 𝑇 ≤ 𝔼 𝑇2 = 𝑃𝑟

𝑖

𝐼 = 𝑖 𝔼 𝑇2|𝐼 = 𝑖

= 𝑒±2𝜖𝑘
𝑓𝑖

2

𝐹2
𝐹2

2𝑓𝑖
2 𝑘−2

= 𝑒±2𝜖𝑘𝐹2𝐹2𝑘−2 ≤ 𝑒±2⁡𝜖𝑘

𝑖∈ 𝑛

𝑛1−
2
𝑘𝐹𝑘

2

• Exercise: Show that 𝐹2𝐹2𝑘−2⁡ ≤ 𝑛1−
2

𝑘⁡𝐹𝑘
2

• Overall: 𝔼 𝑇 = 𝑒±𝜖𝑘𝐹𝑘 , 𝑉𝑎𝑟 𝑇 ≤ 𝑒±2⁡𝜖𝑘⁡𝑛1−
2

𝑘𝐹𝑘
2

– Apply average + median to 𝑂 𝑛1−
2

𝑘⁡𝜖−2 log 𝛿−1 copies

ℓ2-Sampling: Basic Overview

• Assume 𝐹2 𝑓 = 1. Weight 𝑓𝑖 by 𝑤𝑖 =
1

𝑢𝑖
⁡ , where 𝑢𝑖 ∈𝑅 0,1 :

𝑓 = 𝑓1, 𝑓2, … , 𝑓𝑛

𝑔 = (𝑔1, 𝑔2, … , 𝑔𝑛) where 𝑔𝑖 = 𝑤𝑖𝑓𝑖

• For some value 𝑡, return 𝑖, 𝑓𝑖 if there is a unique 𝑖 such that 𝑔𝑖
2 ≥ 𝑡

• Probability (𝑖, 𝑓𝑖) is returned if 𝑡 is large enough:

Pr 𝑔𝑖
2 ≥ 𝑡⁡⁡𝑎𝑛𝑑⁡∀𝑗 ≠ 𝑖, 𝑔𝑗

2 < 𝑡 = Pr 𝑔𝑖
2 ≥ 𝑡 𝑃𝑟 𝑔𝑗

2 < 𝑡

𝑗≠𝑖

= Pr 𝑢𝑖 ≤
𝑓𝑖

2

𝑡
⁡ Pr 𝑢𝑗 >

𝑓𝑗
2

𝑡
𝑗≠𝑖

≈
𝑓𝑖

2

𝑡

• Probability some value is returned
𝑓𝑖

2

𝑡𝑖 =
1

𝑡
, repeat 𝑂 𝑡 log

1

𝛿
 times.

ℓ2-Sampling: Part 1

• Use Count-Sketch with parameters (𝑚, 𝑑) to sketch 𝑔

• To estimate 𝑓𝑖
2:

𝑔𝑖
2 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑗 𝑐𝑗,𝑕𝑗 𝑖

2 and 𝑓𝑖
2 =

𝑔𝑖
2

𝑤𝑖

• Lemma: With high probability if 𝑑 = 𝑂 log 𝑛

𝑔𝑖
2 = 𝑔𝑖

2𝑒±𝜖 ± 𝑂
𝐹2 𝑔

𝜖𝑚

• Corollary: With high probability if 𝑑 = 𝑂 log 𝑛 and

𝑚 ≫
𝐹2 𝑔

𝜖
,

𝑓𝑖
2 = 𝑓𝑖

2𝑒±𝜖 ±
1

𝑤𝑖

• Exercise: Pr 𝐹2 𝑔 ≤ 𝑐 log 𝑛 ≤
99

100
 for large 𝑐 > 0.

Proof of Lemma
• Let 𝑐𝑗 = 𝑟𝑗 𝑖 𝑔𝑖 + 𝑍𝑗

• By the analysis of Count Sketch 𝔼 𝑍𝑗
2 ≤

𝐹2(𝑔)

𝑚
 and by Markov:

Pr 𝑍𝑗
2 ≤

3𝐹2 𝑔

𝑚
≥

2

3

• If 𝑔𝑖 ≥
2

𝜖
𝑍𝑗 , then 𝑐𝑗,𝑕𝑗 𝑖

2
⁡= 𝑒±𝜖 𝑔𝑖

2

• If 𝑔𝑖 ≤
2

𝜖
𝑍𝑗 , then

𝑐𝑗,𝑕𝑗 𝑖
2 ≤ 𝑔𝑖 + 𝑍𝑗

2
− 𝑔𝑖

2 = 𝑍𝑗
2

+ 2⁡ 𝑔𝑖𝑍𝑗 ≤
6 𝑍𝑗

2

𝜖
≤ 18

𝐹2 𝑔

𝜖𝑚

where the last inequality holds with probability 2/3

• Take median over 𝑑 = 𝑂(log 𝑛) repetitions ⇒⁡high probability

ℓ2-Sampling: Part 2

• Let 𝑠𝑖 = 1 if 𝑓𝑖
 2

𝑤𝑖 ≥
4

𝜖
 and 𝑠𝑖 = 0 otherwise

• If there is a unique 𝑖 with 𝑠𝑖 = 1 then return 𝑖, 𝑓𝑖
 2

.

• Note that if 𝑓𝑖
 2

𝑤𝑖 ≥
4

𝜖
 then

1

𝑤𝑖
≤

𝜖𝑓𝑖
 2

4
 and so

𝑓𝑖
 2

= 𝑓𝑖
2𝑒±𝜖 ±

1

𝑤𝑖
= 𝑓𝑖

2⁡𝑒±𝜖 ±
𝜖𝑓𝑖
 2

4
,

therefore 𝑓𝑖
2 = 𝑒±4𝜖⁡𝑓𝑖

 2

• Lemma: With probability Ω(𝜖) there is a unique 𝑖 such

that s𝑖 = 1. If so then Pr 𝑖 = 𝑖∗ = 𝑒±8⁡𝜖𝑓𝑖∗
2

• Thm: Repeat Ω 𝜖−1 log 𝑛 times. Space: 𝑂(𝜖−2𝑝𝑜𝑙𝑦𝑙𝑜𝑔⁡𝑛)

Proof of Lemma

• Let t =
4

𝜖
. We can upper-bound Pr 𝑠𝑖 = 1 :

Pr 𝑠𝑖 = 1 = Pr 𝑓𝑖
 2

𝑤𝑖 ≥ 𝑡 ≤ Pr
𝑒4𝜖𝑓𝑖

2

𝑡
≥ 𝑢𝑖 ≤

𝑒4𝜖𝑓𝑖
2

𝑡

Similarly, Pr 𝑠𝑖 = 1 ≥
𝑒−4𝜖𝑓𝑖

2

𝑡
.

• Using independence of 𝑤𝑖, probability of unique 𝑖 with 𝑠𝑖 = 1:

 Pr 𝑠𝑖 = 1, 𝑠𝑗 = 0

𝑗≠𝑖

≥ Pr 𝑠𝑖 = 1 1⁡ − Pr 𝑠𝑗 = 1⁡

𝑗≠𝑖𝑖𝑖

≥
𝑒−4𝜖𝑓𝑖

2

𝑡
𝑖

1⁡ −
 𝑒4𝜖

𝑗≠𝑖 𝑓𝑖
2

𝑡
⁡

≥
𝑒−4𝜖 1⁡ −

𝑒4𝜖

𝑡

𝑡
≈ 1/𝑡

Proof of Lemma

• Let t =
4

𝜖
. We can upper-bound Pr 𝑠𝑖 = 1 :

Pr 𝑠𝑖 = 1 = Pr 𝑓𝑖
 2

𝑤𝑖 ≥ 𝑡 ≤ Pr
𝑒4𝜖𝑓𝑖

2

𝑡
≥ 𝑢𝑖 ≤

𝑒4𝜖𝑓𝑖
2

𝑡

Similarly, Pr 𝑠𝑖 = 1 ≥
𝑒−4𝜖𝑓𝑖

2

𝑡
.

• We just showed:

 Pr 𝑠𝑖 = 1, 𝑠𝑗 = 0

𝑗≠𝑖𝑖

≈ 1/𝑡

• If there is a unique i, probability 𝑖 = 𝑖∗ is:
Pr⁡,𝑠𝑖∗ = 1, 𝑠𝑗 = 0𝑗≠𝑖 -

 Pr 𝑠𝑖 = 1, 𝑠𝑗 = 0𝑗≠𝑖𝑖

= 𝑒±8𝜖𝑓𝑖∗
2

ℓ0-sampling

• Maintain 𝐹0
 , and 1 ± 0.1 -approximation to 𝐹0.

• Hash items using 𝑕𝑗: 𝑛 → 0,2𝑗 − 1 for 𝑗 ∈ log 𝑛
• For each 𝑗, maintain:

𝐷𝑗 = 1 ± 0.1 |*𝑡|𝑕𝑗 𝑡 = 0+|

𝑆𝑗 = 𝑓𝑡𝑖𝑡
𝑡,𝑕𝑗 𝑡 =0

𝐶𝑗 = 𝑓𝑡

𝑡,𝑕𝑗 𝑡 =0

⁡

• Lemma: At level 𝑗 = 2 + ⌈log 𝐹0
 ⌉ there is a unique element

in the streams that maps to 0 (with constant probability)

• Uniqueness is verified if 𝐷𝑗 = 1 ± 0.1. If so, then output
𝑆𝑗/𝐶𝑗 as the index and 𝐶𝑗 as the count.

Proof of Lemma

• Let 𝑗 = ⌈log 𝐹0
 ⌉ and note that 2𝐹0 < 2𝑗 < 12⁡𝐹0

• For any 𝑖, Pr 𝑕𝑗 𝑖 = 0 =
1

2𝑗

• Probability there exists a unique 𝑖 such that 𝑕𝑗 𝑖 = 0,

 Pr 𝑕𝑗 𝑖 = 0⁡𝑎𝑛𝑑⁡∀𝑘 ≠ 𝑖, 𝑕𝑗 𝑘 ≠ 0

𝑖

= Pr 𝑕𝑗 𝑖 = 0 Pr ∀𝑘 ≠ 𝑖, 𝑕𝑗 𝑘 ≠ 0 𝑕𝑗 𝑖 = 0-

𝑖

≥ Pr 𝑕𝑗 𝑖 = 0 1 − Pr 𝑕𝑗 𝑘 = 0 𝑕𝑗 𝑖 = 0

𝑘≠𝑖𝑖

= Pr 𝑕𝑗 𝑖 = 0 1⁡ − Pr 𝑕𝑗 𝑘 = 0

𝑘≠𝑖𝑖

≥
1

2𝑗
1⁡ −

𝐹0

2𝑗
≥

1

24
𝑖

• Holds even if 𝑕𝑗 are only 2-wise independent

