CIS 700:
“algorithms for Big Data”

Lecture 3: Streaming

Slides at http://erigory.us/big-data-class.html

Grigory Yaroslavtsev
http://grigory.us 7N

http://grigory.us/
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html

Count-Min Sketch

* https://sites.google.com/site/countminsketch/

* Stream: m elements from universe [n]| =
{1,2,..,n}, eg.
(x1,%, .., %m) =¢(5,8,1,1,1,4,3,5, ..., 10)
* f; =frequency of i in the stream = # of
occurrences of value i, f = (f1, ..., fn)
* Problems:
— Point Query: For i € |n] estimate f;
— Range Query: For i,j € [n] estimate f; + --- + f;
— Quantile Query: For ¢ € [0,1] find j with f; + -+ +
Jj = ¢m
— Heavy Hitters: For ¢ € [0,1] find all i with f; = ¢m

https://sites.google.com/site/countminsketch/
https://sites.google.com/site/countminsketch/

Count-Min Sketch: Construction

Let Hy, ..., Hy: [n] = [w] be 2-wise
independent hash functions
We maintain d - w counters with values:

c;j = # elements e in the stream with H;(e) = j

For every x the value ¢; y,(x) = f and so:

fr < ﬁc — min(cl,Hl(x): rery Cd,Hd(x))
2 1

Ifw = . and d = logzg then:

Prlfy < fi<fitem|=1 -6

Count-Min Sketch: Analysis

Define random variables Z; ..., Z; such that ¢; g,y = fx + Z;

Z; = z fy

yix,Hi(y)=Hi(x)
Define X;,, = 1if H;(y) = H;(x) and 0 otherwise:

Z;, = Z fyXi,y

VX
By 2-wise independence:

E[Z;] = Syer fy E[Xiy] = Byur fy PrIHI () = Hi(0] < T
By Markov inequality,

1 1
PrlZ, Zem|] < — ==
we 2

Count-Min Sketch: Analysis

* All Z; are independent

d
1
Pr|Z; = em forall 1Si£d]£<§> =0

* With prob. 1 — 0 there exists j such that Z; < em
f:c — min(cl,Hl(x), cer Cd,Hd(x)) —
=min(f,, +Z;f, + Z4) < f,, + em
* CountMin estimates values f,. up to em with total

logmlog%)\
€

memory O (

Dyadic Intervals

 Define logn partitions of [n]:
I, = {1,2,3,...n)

L ={{1,2}, {34}, .., {n — 1,n}}
I, ={{1,2,3,4},{5,6,7,8},..,{n—3,n —2,n — 1,n}}

logn = {{1,2,3,...,n}}

* Exercise: Any interval (i,j) can be written as a disjoint
union of at most 2 log n such intervals.

e Example: Forn = 256: [48,107] = [48,48] U [49,64] U
|165,96] U [97,104] U [105,106] U [107,107]

Count-Min: Range Queries and Quantiles

* Range Query: For i,j € [n] estimate f; + - f;
* Approximate median: Find j such that:

f1+-~+f]-2%+emand

m
fit 4 fii S —em

Count-Min: Range Queries and Quantiles

* Algorithm: Construct log n Count-Min sketches,
one for each I; such that for any I € I; we have

an estimate f; for f; such that:
Pr[fl <ﬁ<fl+em] >1—-0
 To estimate [i,j], let I; ..., I, be decomposition:

f fll ﬁ;

* Hence,
Pr[fl] 1< 2 emlogn] >1 —26logn

Count-Min: Heavy Hitters

* Heavy Hitters: For ¢ € [0,1] find all i with f; = ¢m
but no elements with f; < (¢ —e)m
* Algorithm:

— Consider binary tree whose leaves are [n] and
associate internal nodes with intervals
corresponding to descendant leaves

— Compute Count-Min sketches for each [;

— Level-by-level from root, mark children I of
marked nodes if f; = ¢m

— Return all marked leaves
* Finds heavy-hittersin 0(¢~1logn) steps

More about Count-Min

Authors: Graham Cormode, S. Muthukrishnan [LATIN’04]
Count-Min is linear:
Count-Min(S1 + S2) = Count-Min(S1) + Count-Min(S2)

Deterministic version: CR-Precis

Count-Min vs. Bloom filters

— Allows to approximate values, not just 0/1 (set membership)
— Doesn’t require mutual independence (only 2-wise)

FAQ and Applications:

— https://sites.google.com/site/countminsketch/home/

— https://sites.google.com/site/countminsketch/home/faq

https://sites.google.com/site/countminsketch/home/
https://sites.google.com/site/countminsketch/home/faq

Fully Dynamic Streams

Stream: m updates (x;,4;) € [n] X R that define vector f
where f; = 2= 4.
Example: Forn = 4

((1,3),(3,0.5),(1,2),(2,-2),(2,1),(1,-1),(4,1))
f=(#4,-1,05,1)
Count-Min Sketch:

Pr|iF — el +ellfll,| 21 -5

Count Sketch: Count-Min with random signs and
median instead of min:

Pr|if — ful +ellfl],| 21 -6

Count Sketch

* In addition to H;: [n] = [w] use random signs
rli] - {-1,1}

Cij = Z 13 (%) f

x:Hi(x)=j
e Estimate:

f., = median(ry (X)C1,H,(x)r - Ta(X)Cam,(x))

 Parameters:d = O (IOgSi);W — :_z

Pr(ife — el +ellfllz] =1 =6

t,-Sampling

» Stream: m updates (x;,A;) € [n] X R that
define vector f where f; = Y., - A;.

* £,-Sampling: Returnrandom [€ [n]and R € R:

_ |filP L n=C
Pr[l =i] = (1%)“f”p |

R=Q0ztef

Application: Social Networks

Each of n people in a social network is friends
with some arbitrary set of other n — 1 people

Each person knows only about their friends

With no communication in the network, each
person sends a postcard to Mark Z.

If Mark wants to know if the graph is
connected, how long should the postcards be?

Optimal F;, estimation

* Lasttime: (€, 6)-approximate Fj,
— 0(n'~/%) space for F, = Y;|f;|*
— O(logn) space for F,
* New algorithm: Let (I, R) be an £,-sample.
Return T = F,R*™?, where F, is an e£€ estimate of F,
* Expectation:

FZZPT (e+efl)k 2

}:fl _
— eiEsz fik 2 — eiEka
L F,

lLEIN

Optimal F;, estimation

* New algorithm: Let (I, R) be an £5,-sample.
Return T = F,R*™2, where F, is an e£€ estimate of F,
* \Variance:

Var[T] < E[T?] = Z Pr[I = i]E[T?|I = i]

f 2
iZEk 2 l szz(k 2) +ZEkF2F2k 5 < €+2 ek Tll ka

i€[n]
* Exercise: Show that FyFyj_p < i F?

2
o Overall: E[T] = e¢kF,,, Var[T] < e*2¢k n' "kF?

2

— Apply average + median to O (nl ke ?log 5‘1) copies

£,-Sampling: Basic Overview

Assume F,(f) = 1. Weight f; by \/w; = \/uz , Where u; €5 [0,1]:

f= (f1;f2»---;fn)

g = (91,92 ---» gn) Where g; = W f;
For some value t, return (i, f;) if there is a unique i such that gl-z >t

Probability (i, f;) is returned if t is large enough:

Pr[gi2 >t and Vj #+ i,gj2 < t] = Pr[gl-2 > t] 1_[Pr[g]z < t]

]-'/:l
| [Tl

JET

.2
]

= Pr ul_—

t

fl

1 1\ ..
Probability some value is returned);; =~ = o repeat O (tlogg) times.

£,-Sampling: Part 1

Use Count-Sketch with parameters (m, d) to sketch g
To estimate f;*:

—

—_— 2
2 _ - 2 2 _Y9i
g; = median, (cj,hj(i)) and f;* =~

Lemma: With high probability if d = O(logn) l

> F,(g)
9; =g?eiei0< —)

Corollary: With high probability if d = O(logn) and

m > F,(9) ’

€

— 1
2 _ f2_+
f&=Jfe 1

Exercise: Pr[F,(g) < clogn] < %for large ¢ > 0.

Proof of Lemma
Let ¢; = 1;(i)g; + Z;
By the analysis of Count Sketch]E[Zz] < M and by Markov:

3F (g) 2
2 2 -
2 2 — ,te€ 2
« If |g;] ZZ ‘Cj,hj(i) = e~|g;]
¢ Iflgil <3
2
6|Z; F,(g9)
‘Cﬁhj(i) < (lgil +1z)" = lail? = |z]" + 2 |9:2| < |e]| =18 zerg

where the last inequality holds with probability 2/3

* Take median over d = O(logn) repetitions = high probability

£,-Sampling: Part 2

=2 4 .
e Lets; =1iff; w; 2 Zand s; = 0 otherwise

2
* If thereis a unique i with s; = 1 then return (i,fi)

—2
E .
fi and so

* Note that |ffl- w; = then — <

Wi

A

f _fZ +E_|_ _fZ -I-E_l_Efl
l — l

o +
therefore f* = —4Efl-

* Lemma: With probability Q(e) thereis a unlque i such
thats; = 1. If so then Pr[i = i*] = e*8€f%

e Thm: Repeat Q(e 1 logn) times. Space: O(e ?polylog n)

Proof of Lemma

¢ lett= g. We can upper-bound Pr[s; = 1]:
846f-2
l

t

e4-6fl_2

t

<

Pr[s; = 1] = Pr [fizwi > t] < Pr > U;

Similarly, Pr[s; = 1] =
* Using independence of w;, probability of unique i with s; = 1:

Zpr[si = 1,Zsj =0] ZZPr[si=1]<1 —Zpr[sj = 1])

i JE! J#i

e—4e‘]c'i2 Zj-‘#i e4€ fiz
= z t (1 ot)

i

e—4€ (1 _ 646)
t
= ~ 1/t

t

Proof of Lemma

o Lett = g. We can upper-bound Pr|s; = 1]:

Pr|s; = 1] = Pr [ﬁ-zwi > t] < Pr

e—4Efi2

t

Similarly, Pr[s; = 1] =
 We just showed:

zPr —1251—0

j#i

e4€fi2
r

=

~ 1/t

e |fthereisa unlquel probability i = i is:

PI'[Sl* =1 Z]ilS] — O]
Z Pr[Sl =1, Z]il = O]

+8€f
"

uiS

e4Efl_2

t

fy-sampling

Maintain 755, and (1 + O 1) -approximation to Fj.

Hash items using h;: [O 2] — 1] forj € [logn]

For each J, malntaln
D; = (1 + 0.1)|{t|hy(6) = 0}

Lemma: At level j = 2 + [log F,] there is a unique element
in the streams that maps to 0 (with constant probability)

Uniqueness is verified if D; = 1 + 0.1. If so, then output
S;/C; as the index and C; as the count.

Proof of Lemma

 Letj = [logFy] and note that 2F, < 2/ < 12 F,
* Foranyi, Pr[hj(i) = O] = —
* Probability there exists a unique i such that h;(i) = 0,

Z Pr[h (i) = 0 and Vk # i, h;(k) # 0]

- Z Pr[h; (i) = 0] Pr[Vk # i, hj(k) # 0| k() = 0]

> z Pr[h;(i) = 0] (1 — 2 Pr|h;(k) = 0|h;()) = o])

k+i

ZPI‘[h(l)—O(l —ZPr[h(k)-O]) 221(__0) %

k+i
* Holds even if h; are only 2-wise independent

