CIS 700: "algorithms for Big Data"

Lecture 3: Streaming

Slides at http://grigory.us/big-data-class.html

Grigory Yaroslavtsev http://grigory.us

Count-Min Sketch

- https://sites.google.com/site/countminsketch/
- Stream: *m* elements from universe [*n*] = {1, 2, ..., *n*}, e.g. ⟨x₁, x₂, ..., x_m⟩ = ⟨5, 8, 1, 1, 1, 4, 3, 5, ..., 10⟩
- f_i = frequency of i in the stream = # of occurrences of value $i, f = \langle f_1, \dots, f_n \rangle$
- Problems:
 - Point Query: For $i \in [n]$ estimate f_i
 - Range Query: For $i, j \in [n]$ estimate $f_i + \dots + f_j$
 - Quantile Query: For $\phi \in [0,1]$ find j with $f_1 + \dots + f_j \approx \phi m$
 - Heavy Hitters: For $\phi \in [0,1]$ find all i with $f_i \ge \phi m$

Count-Min Sketch: Construction

- Let $H_1, \ldots, H_d: [n] \rightarrow [w]$ be 2-wise independent hash functions
- We maintain $d \cdot w$ counters with values: $c_{i,j} = #$ elements e in the stream with $H_i(e) = j$
- For every x the value $c_{i,H_i(x)} \ge f_x$ and so: $f_x \le \tilde{f}_x = \min(c_{1,H_1(x)}, \dots, c_{d,H_d(x)})$ • If $w = \frac{2}{\epsilon}$ and $d = \log_2 \frac{1}{\delta}$ then: $\Pr[f_x \le \tilde{f}_x \le f_x + \epsilon m] \ge 1 - \delta.$

Count-Min Sketch: Analysis

• Define random variables $Z_1 \dots Z_d$ such that $c_{i,H_i(x)} = f_x + Z_i$

$$Z_i = \sum_{y \neq x, H_i(y) = H_i(x)} f_y$$

• Define $X_{i,y} = 1$ if $H_i(y) = H_i(x)$ and 0 otherwise:

$$\boldsymbol{Z}_i = \sum_{y \neq x} f_y \boldsymbol{X}_{i,y}$$

- By 2-wise independence: $\mathbb{E}[\mathbf{Z}_i] = \sum_{y \neq x} f_y \mathbb{E}[\mathbf{X}_{i,y}] = \sum_{y \neq x} f_y \Pr[H_i(y) = H_i(x)] \le \frac{m}{w}$
- By Markov inequality,

$$\Pr[\mathbf{Z}_i \ge \epsilon m] \le \frac{1}{w \ \epsilon} = \frac{1}{2}$$

Count-Min Sketch: Analysis

• All Z_i are independent

$$\Pr[Z_i \ge \epsilon m \text{ for all } 1 \le i \le d] \le \left(\frac{1}{2}\right)^d = \delta$$

- With prob. 1δ there exists j such that $Z_j \leq \epsilon m$ $\widetilde{f}_x = \min(c_{1,H_1(x)}, \dots, c_{d,H_d(x)}) =$ $= \min(f_x, +Z_1, \dots, f_x + Z_d) \leq f_x + \epsilon m$
- CountMin estimates values f_{χ} up to $\pm \epsilon m$ with total memory $O\left(\frac{\log m \log \frac{1}{\delta}}{\epsilon}\right)$

Dyadic Intervals

- Define log *n* partitions of [*n*]:
- $$\begin{split} &I_0 = \{1,2,3,\ldots n\} \\ &I_1 = \{\{1,2\},\{3,4\},\ldots,\{n-1,n\}\} \\ &I_2 = \{\{1,2,3,4\},\{5,6,7,8\},\ldots,\{n-3,n-2,n-1,n\}\} \end{split}$$

$$I_{\log n} = \{\{1, 2, 3, \dots, n\}\}\$$

. . .

- Exercise: Any interval (*i*, *j*) can be written as a disjoint union of at most $2 \log n$ such intervals.
- Example: For n = 256: $[48,107] = [48,48] \cup [49,64] \cup [65,96] \cup [97,104] \cup [105,106] \cup [107,107]$

Count-Min: Range Queries and Quantiles

- Range Query: For $i, j \in [n]$ estimate $f_i + \cdots + f_j$
- Approximate median: Find *j* such that:

$$f_1 + \dots + f_j \ge \frac{m}{2} + \epsilon m$$
 and
 $f_1 + \dots + f_{j-1} \le \frac{m}{2} - \epsilon m$

Count-Min: Range Queries and Quantiles

- Algorithm: Construct $\log n$ Count-Min sketches, one for each I_i such that for any $I \in I_i$ we have an estimate \tilde{f}_l for f_l such that: $\Pr[f_l \leq \tilde{f}_l \leq f_l \leq f_l + \epsilon m] \geq 1 - \delta$
- To estimate [i, j], let $I_1 \dots, I_k$ be decomposition: $\widetilde{f_{[i,j]}} = \widetilde{f_{l_1}} + \dots + \widetilde{f_{l_k}}$
- Hence,

 $\Pr[f_{[i,j]} \le \widetilde{f_{[i,j]}} \le 2 \epsilon m \log n] \ge 1 - 2\delta \log n$

Count-Min: Heavy Hitters

- Heavy Hitters: For $\phi \in [0,1]$ find all i with $f_i \ge \phi m$ but no elements with $f_i \le (\phi - \epsilon)m$
- Algorithm:
 - Consider binary tree whose leaves are [n] and associate internal nodes with intervals corresponding to descendant leaves
 - Compute Count-Min sketches for each I_i
 - Level-by-level from root, mark children I of marked nodes if $\widetilde{f}_l \geq \phi m$
 - Return all marked leaves
- Finds heavy-hitters in $O(\phi^{-1} \log n)$ steps

More about Count-Min

- Authors: Graham Cormode, S. Muthukrishnan [LATIN'04]
- Count-Min is linear:

Count-Min(S1 + S2) = Count-Min(S1) + Count-Min(S2)

- Deterministic version: CR-Precis
- Count-Min vs. Bloom filters
 - Allows to approximate values, not just 0/1 (set membership)
 - Doesn't require mutual independence (only 2-wise)
- FAQ and Applications:
 - <u>https://sites.google.com/site/countminsketch/home/</u>
 - <u>https://sites.google.com/site/countminsketch/home/faq</u>

Fully Dynamic Streams

- Stream: **m** updates $(x_i, \Delta_i) \in [n] \times \mathbb{R}$ that define vector f where $f_j = \sum_{i:x_i=j} \Delta_i$.
- Example: For n = 4

$$\langle (1,3), (3,0.5), (1,2), (2,-2), (2,1), (1,-1), (4,1) \rangle$$

 $f = (4,-1,0.5,1)$

- Count-Min Sketch: $\Pr\left[|\widetilde{f_x} - f_x| + \epsilon ||f||_1\right] \ge 1 - \delta$
- Count Sketch: Count-Min with random signs and median instead of min:

$$\Pr\left[\left|\widetilde{f_x} - f_x\right| + \epsilon \left|\left|f\right|\right|_2\right] \ge 1 - \delta$$

Count Sketch

• In addition to $H_i: [n] \rightarrow [w]$ use random signs $r[i] \rightarrow \{-1,1\}$

$$c_{i,j} = \sum_{x:H_i(x)=j} r_i(x) f_x$$

• Estimate:

 $\hat{f}_x = median(r_1(x)c_{1,H_1(x)}, \dots, r_d(x)c_{d,H_d(x)})$

• Parameters: $d = O\left(\log\frac{1}{\delta}\right)$, $w = \frac{3}{\epsilon^2}$ $\Pr\left[|\widetilde{f_x} - f_x| + \epsilon ||f||_2\right] \ge 1 - \delta$

 ℓ_p -Sampling

- Stream: *m* updates $(x_i, \Delta_i) \in [n] \times \mathbb{R}$ that define vector *f* where $f_j = \sum_{i:x_i=j} \Delta_i$.
- ℓ_p -Sampling: Return random $I \in [n]$ and $R \in \mathbb{R}$:

$$\Pr[I = i] = (1 \pm \epsilon) \frac{|f_i|^p}{||f||_p^p} + n^{-\epsilon}$$
$$R = (1 \pm \epsilon) f_I$$

Application: Social Networks

- Each of n people in a social network is friends with some arbitrary set of other n-1 people
- Each person knows only about their friends
- With no communication in the network, each person sends a postcard to Mark Z.
- If Mark wants to know if the graph is connected, how long should the postcards be?

Optimal F_k estimation

- Last time: (ϵ, δ) -approximate F_k $- \tilde{O}(n^{1-1/k})$ space for $F_k = \sum_i |f_i|^k$ $- \tilde{O}(\log n)$ space for F_2
- New algorithm: Let (I, R) be an ℓ_2 -sample. Return $T = \widehat{F_2} R^{k-2}$, where $\widehat{F_2}$ is an $e^{\pm \epsilon}$ estimate of F_2
- Expectation:

$$\mathbb{E}[T] = \widehat{F_2} \sum_{i} \Pr[I=i] (e^{\pm \epsilon} f_i)^{k-2}$$
$$= e^{\pm \epsilon k} F_2 \sum_{i \in [n]} \frac{f_i^2}{F_2} f_i^{k-2} = e^{\pm \epsilon k} F_k$$

Optimal F_k estimation

- New algorithm: Let (I, R) be an ℓ_2 -sample. Return $T = \widehat{F_2}R^{k-2}$, where $\widehat{F_2}$ is an $e^{\pm \epsilon}$ estimate of F_2
- Variance:

$$\begin{aligned} &Var[T] \le \mathbb{E}[T^2] = \sum_{i} Pr[I=i] \mathbb{E}[T^2|I=i] \\ &= e^{\pm 2\epsilon k} \sum_{i \in [n]} \frac{f_i^2}{F_2} F_2^2 f_i^{2(k-2)} = e^{\pm 2\epsilon k} F_2 F_{2k-2} \le e^{\pm 2\epsilon k} n^{1-\frac{2}{k}} F_k^2 \end{aligned}$$

- Exercise: Show that $F_2 F_{2k-2} \leq n^{1-\frac{2}{k}} F_k^2$
- Overall: $\mathbb{E}[T] = e^{\pm \epsilon k} F_k$, $Var[T] \le e^{\pm 2 \epsilon k} n^{1-\frac{2}{k}} F_k^2$ - Apply average + median to $O\left(n^{1-\frac{2}{k}} \epsilon^{-2} \log \delta^{-1}\right)$ copies

ℓ_2 -Sampling: Basic Overview

- Assume $F_2(f) = 1$. Weight f_i by $\sqrt{w_i} = \sqrt{\frac{1}{u_i}}$, where $u_i \in_R [0,1]$: $f = (f_1, f_2, \dots, f_n)$ $g = (g_1, g_2, \dots, g_n)$ where $g_i = \sqrt{w_i} f_i$
- For some value t, return (i, f_i) if there is a unique i such that $g_i^2 \ge t$
- Probability (i, f_i) is returned if t is large enough:

$$\Pr[g_i^2 \ge t \text{ and } \forall j \neq i, g_j^2 < t] = \Pr[g_i^2 \ge t] \prod_{j \neq i} \Pr[g_j^2 < t]$$
$$= \Pr\left[u_i \le \frac{f_i^2}{t}\right] \prod_{j \neq i} \Pr\left[u_j > \frac{f_j^2}{t}\right] \approx \frac{f_i^2}{t}$$

• Probability some value is returned $\sum_{i} \frac{f_i^2}{t} = \frac{1}{t}$, repeat $O\left(t \log \frac{1}{\delta}\right)$ times.

ℓ_2 -Sampling: Part 1

- Use Count-Sketch with parameters (m, d) to sketch g
- To estimate f_i^2 :

Lemm

$$g_i^2 = median_j \left(c_{j,h_j(i)}^2\right) \text{ and } \widehat{f_i^2} = \frac{\widehat{g_i^2}}{w_i}$$

a: With high probability if $d = O(\log n)$
$$\widehat{g_i^2} = g_i^2 e^{\pm \epsilon} \pm O\left(\frac{F_2(g)}{\epsilon m}\right)$$

• Corollary: With high probability if $d = O(\log n)$ and $m \gg \frac{F_2(g)}{\epsilon}$,

$$\widehat{f_i^2} = f_i^2 e^{\pm \epsilon} \pm \frac{1}{w_i}$$

Exercise: $\Pr[F_2(g) \le c \log n] \le \frac{99}{100}$ for large $c > 0$.

Proof of Lemma

- Let $c_j = r_j(i)g_i + Z_j$
- By the analysis of Count Sketch $\mathbb{E}[Z_j^2] \leq \frac{F_2(g)}{m}$ and by Markov:

$$\Pr\left[Z_j^2 \le \frac{3F_2(g)}{m}\right] \ge \frac{2}{3}$$

• If $|g_i| \ge \frac{2}{\epsilon} |Z_j|$, then $|c_{j,h_j(i)}|^2 = e^{\pm\epsilon} |g_i|^2$

• If $|g_i| \leq \frac{2}{\epsilon} |Z_j|$, then

 $\left|c_{j,h_{j}(i)}^{2}\right| \leq \left(\left|g_{i}\right| + \left|Z_{j}\right|\right)^{2} - \left|g_{i}\right|^{2} = \left|Z_{j}\right|^{2} + 2\left|g_{i}Z_{j}\right| \leq \frac{6\left|Z_{j}\right|^{2}}{\epsilon} \leq 18\frac{F_{2}(g)}{\epsilon m}$ where the last inequality holds with probability 2/3

• Take median over $d = O(\log n)$ repetitions \Rightarrow high probability

ℓ_2 -Sampling: Part 2

• Let
$$s_i = 1$$
 if $\widehat{f_i}^2 w_i \ge \frac{4}{\epsilon}$ and $s_i = 0$ otherwise

- If there is a unique *i* with $s_i = 1$ then return $(i, \hat{f_i}^2)$.
- Note that if $\widehat{f_i}^2 w_i \ge \frac{4}{\epsilon}$ then $\frac{1}{w_i} \le \frac{\epsilon \widehat{f_i}^2}{4}$ and so $\widehat{f_i}^2 = f_i^2 e^{\pm \epsilon} \pm \frac{1}{w_i} = f_i^2 e^{\pm \epsilon} \pm \frac{\epsilon \widehat{f_i}^2}{4}$, therefore $f_i^2 = e^{\pm 4\epsilon} \widehat{f_i}^2$
- Lemma: With probability $\Omega(\epsilon)$ there is a unique i such that $s_i = 1$. If so then $\Pr[i = i^*] = e^{\pm 8 \epsilon} f_{i^*}^2$
- Thm: Repeat $\Omega(\epsilon^{-1} \log n)$ times. Space: $O(\epsilon^{-2} polylog n)$

Proof of Lemma

• Let $t = \frac{4}{c}$. We can upper-bound $\Pr[s_i = 1]$: $\Pr[s_i = 1] = \Pr\left[\widehat{f_i}^2 w_i \ge t\right] \le \Pr\left[\frac{e^{4\epsilon}f_i^2}{t} \ge u_i\right] \le \frac{e^{4\epsilon}f_i^2}{t}$ Similarly, $\Pr[s_i = 1] \ge \frac{e^{-4\epsilon} f_i^2}{\epsilon}$. Using independence of w_i , probability of unique *i* with $s_i = 1$: $\sum_{i} \Pr\left[s_i = 1, \sum_{i \neq i} s_j = 0\right] \ge \sum_{i} \Pr\left[s_i = 1\right] \left(1 - \sum_{i \neq i} \Pr\left[s_j = 1\right]\right)$ $\geq \sum_{i} \frac{e^{-4\epsilon} f_i^2}{t} \left(1 - \frac{\sum_{j \neq i} e^{4\epsilon} f_i^2}{t} \right)$ $\geq \frac{e^{-4\epsilon} \left(1 - \frac{e^{4\epsilon}}{t}\right)}{1 - \frac{e^{4\epsilon}}{t}} \approx 1/t$

Proof of Lemma

- Let $t = \frac{4}{\epsilon}$. We can upper-bound $\Pr[s_i = 1]$: $\Pr[s_i = 1] = \Pr\left[\widehat{f_i}^2 w_i \ge t\right] \le \Pr\left[\frac{e^{4\epsilon}f_i^2}{t} \ge u_i\right] \le \frac{e^{4\epsilon}f_i^2}{t}$ Similarly, $\Pr[s_i = 1] \ge \frac{e^{-4\epsilon}f_i^2}{t}$.
- We just showed:

$$\sum_{i} \Pr\left[s_i = 1, \sum_{j \neq i} s_j = 0\right] \approx 1/t$$

• If there is a unique i, probability $i = i^*$ is: $\frac{\Pr[s_{i^*} = 1, \sum_{j \neq i} s_j = 0]}{\sum_i \Pr[s_i = 1, \sum_{j \neq i} s_j = 0]} = e^{\pm 8\epsilon} f_{i^*}^2$

ℓ_0 -sampling

- Maintain $\widetilde{F_0}$, and (1 ± 0.1) -approximation to F_0 .
- Hash items using $h_j: [n] \rightarrow [0, 2^j 1]$ for $j \in [\log n]$
- For each *j*, maintain:

$$D_j = (1 \pm 0.1) |\{t | h_j(t) = 0\}|$$

$$S_j = \sum_{t,h_{j(t)}=0} f_t i_t$$
$$C_j = \sum_{t,h_j(t)=0} f_t$$

- Lemma: At level $j = 2 + \lceil \log \tilde{F_0} \rceil$ there is a unique element in the streams that maps to 0 (with constant probability)
- Uniqueness is verified if $D_j = 1 \pm 0.1$. If so, then output S_j/C_j as the index and C_j as the count.

Proof of Lemma

- Let $j = \lceil \log \widetilde{F_0} \rceil$ and note that $2F_0 < 2^j < 12 F_0$
- For any *i*, $\Pr[h_j(i) = 0] = \frac{1}{2^j}$
- Probability there exists a unique *i* such that $h_j(i) = 0$,

$$\sum_{i} \Pr[h_{j}(i) = 0 \text{ and } \forall k \neq i, h_{j}(k) \neq 0]$$

= $\sum_{i} \Pr[h_{j}(i) = 0] \Pr[\forall k \neq i, h_{j}(k) \neq 0 | h_{j(i)} = 0]$
 $\geq \sum_{i} \Pr[h_{j}(i) = 0] \left(1 - \sum_{k \neq i} \Pr[h_{j}(k) = 0 | h_{j}(i) = 0]\right)$
= $\sum_{i} \Pr[h_{j}(i) = 0] \left(1 - \sum_{k \neq i} \Pr[h_{j}(k) = 0]\right) \geq \sum_{i} \frac{1}{2^{j}} \left(1 - \frac{F_{0}}{2^{j}}\right) \geq \frac{1}{24}$

• Holds even if h_j are only 2-wise independent