CIS 700:
 "algorithms for Big Data"
 Lecture 3: Streaming

Slides at http://grigory.us/big-data-class.html

Grigory Yaroslavtsev

http://grigory.us

Count-Min Sketch

- https://sites.google.com/site/countminsketch/
- Stream: m elements from universe $[\boldsymbol{n}]=$ $\{1,2, \ldots, \boldsymbol{n}\}$, e.g.

$$
\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle=\langle 5,8,1,1,1,4,3,5, \ldots, 10\rangle
$$

- $f_{i}=$ frequency of i in the stream $=\#$ of occurrences of value $i, f=\left\langle f_{1}, \ldots, f_{n}\right\rangle$
- Problems:
- Point Query: For $i \in[n]$ estimate f_{i}
- Range Query: For $i, j \in[n]$ estimate $f_{i}+\cdots+f_{j}$
- Quantile Query: For $\phi \in[0,1]$ find j with $f_{1}+\cdots+$ $f_{j} \approx \phi m$
- Heavy Hitters: For $\phi \in[0,1]$ find all i with $f_{i} \geq \phi m$

Count-Min Sketch: Construction

- Let $H_{1}, \ldots, H_{d}:[n] \rightarrow[w]$ be 2 -wise independent hash functions
- We maintain $d \cdot w$ counters with values:
$c_{i, j}=\#$ elements e in the stream with $H_{i}(e)=j$
- For every x the value $c_{i, H_{i}(x)} \geq f_{x}$ and so:

$$
f_{x} \leq \widetilde{f}_{x}=\min \left(c_{1, H_{1}(x)}, \ldots, c_{d, H_{d}(x)}\right)
$$

- If $w=\frac{2}{\epsilon}$ and $d=\log _{2} \frac{1}{\delta}$ then:

$$
\operatorname{Pr}\left[f_{x} \leq \widetilde{f_{x}} \leq f_{x}+\epsilon m\right] \geq 1-\delta
$$

Count-Min Sketch: Analysis

- Define random variables $\boldsymbol{Z}_{1} \ldots, \boldsymbol{Z}_{\boldsymbol{d}}$ such that $c_{i, H_{i}(x)}=f_{x}+\boldsymbol{Z}_{i}$

$$
\boldsymbol{Z}_{i}=\sum_{y \neq x, H_{i}(y)=H_{i}(x)} f_{y}
$$

- Define $\boldsymbol{X}_{i, y}=1$ if $H_{i}(y)=H_{i}(x)$ and 0 otherwise:

$$
\boldsymbol{Z}_{i}=\sum_{y \neq x} f_{y} \boldsymbol{X}_{i, y}
$$

- By 2-wise independence:

$$
\mathbb{E}\left[\boldsymbol{Z}_{i}\right]=\sum_{y \neq x} f_{y} \mathbb{E}\left[\boldsymbol{X}_{i, y}\right]=\sum_{y \neq x} f_{y} \operatorname{Pr}\left[H_{i}(y)=H_{i}(x)\right] \leq \frac{m}{w}
$$

- By Markov inequality,

$$
\operatorname{Pr}\left[Z_{i} \geq \epsilon m\right] \leq \frac{1}{w \epsilon}=\frac{1}{2}
$$

Count-Min Sketch: Analysis

- All Z_{i} are independent

$$
\operatorname{Pr}\left[Z_{i} \geq \epsilon m \text { for all } 1 \leq i \leq d\right] \leq\left(\frac{1}{2}\right)^{d}=\delta
$$

- With prob. $1-\delta$ there exists j such that $Z_{j} \leq \epsilon m$

$$
\begin{aligned}
& \widetilde{f_{x}}=\min \left(c_{1, H_{1}(x)}, \ldots, c_{d, H_{d}(x)}\right)= \\
= & \min \left(f_{x},+Z_{1} \ldots, f_{x}+Z_{d}\right) \leq f_{x}+\epsilon m
\end{aligned}
$$

- CountMin estimates values f_{x} up to $\pm \epsilon m$ with total memory $O\left(\frac{\log m \log _{\frac{1}{\delta}}}{\epsilon}\right)$.

Dyadic Intervals

- Define $\log n$ partitions of $[n]$:
$I_{0}=\{1,2,3, \ldots n\}$
$I_{1}=\{\{1,2\},\{3,4\}, \ldots,\{n-1, n\}\}$
$I_{2}=\{\{1,2,3,4\},\{5,6,7,8\}, \ldots,\{n-3, n-2, n-1, n\}\}$
$\mathrm{I}_{\log \mathrm{n}}=\{\{1,2,3, \ldots, n\}\}$
- Exercise: Any interval (i, j) can be written as a disjoint union of at most $2 \log n$ such intervals.
- Example: For $n=256:[48,107]=[48,48] \cup[49,64] \cup$ $[65,96] \cup[97,104] \cup[105,106] \cup[107,107]$

Count-Min: Range Queries and Quantiles

- Range Query: For $i, j \in[n]$ estimate $f_{i}+\cdots f_{j}$
- Approximate median: Find j such that:

$$
\begin{aligned}
& f_{1}+\cdots+f_{j} \geq \frac{m}{2}+\epsilon m \text { and } \\
& f_{1}+\cdots+f_{j-1} \leq \frac{m}{2}-\epsilon m
\end{aligned}
$$

Count-Min: Range Queries and Quantiles

- Algorithm: Construct $\log n$ Count-Min sketches, one for each I_{i} such that for any $I \in I_{i}$ we have an estimate \tilde{f}_{l} for f_{l} such that:

$$
\operatorname{Pr}\left[f_{l} \leq \widetilde{f}_{l} \leq f_{l}+\epsilon m\right] \geq 1-\delta
$$

- To estimate $[i, j]$, let $I_{1} \ldots, I_{k}$ be decomposition:

$$
\widetilde{f_{[i, j]}}=\widetilde{f_{l_{1}}}+\cdots+\widetilde{f_{l_{k}}}
$$

- Hence,

$$
\operatorname{Pr}\left[f_{[i, j]} \leq \widetilde{f_{[i, j]}} \leq 2 \epsilon m \log n\right] \geq 1-2 \delta \log n
$$

Count-Min: Heavy Hitters

- Heavy Hitters: For $\phi \in[0,1]$ find all i with $f_{i} \geq \phi m$ but no elements with $f_{i} \leq(\phi-\epsilon) m$
- Algorithm:
- Consider binary tree whose leaves are [n] and associate internal nodes with intervals corresponding to descendant leaves
- Compute Count-Min sketches for each I_{i}
- Level-by-level from root, mark children I of marked nodes if $\widetilde{f}_{l} \geq \phi m$
- Return all marked leaves
- Finds heavy-hitters in $O\left(\phi^{-1} \log n\right)$ steps

More about Count-Min

- Authors: Graham Cormode, S. Muthukrishnan [LATIN’04]
- Count-Min is linear:

Count-Min(S1 + S2) $=$ Count-Min(S1) + Count-Min(S2)

- Deterministic version: CR-Precis
- Count-Min vs. Bloom filters
- Allows to approximate values, not just 0/1 (set membership)
- Doesn't require mutual independence (only 2-wise)
- FAQ and Applications:
- https://sites.google.com/site/countminsketch/home/
- https://sites.google.com/site/countminsketch/home/faq

Fully Dynamic Streams

- Stream: m updates $\left(x_{i}, \Delta_{i}\right) \in[n] \times \mathbb{R}$ that define vector f where $f_{j}=\sum_{i: x_{i}=j} \Delta_{i}$.
- Example: For $n=4$

$$
\begin{gathered}
\langle(1,3),(3,0.5),(1,2),(2,-2),(2,1),(1,-1),(4,1)\rangle \\
f=(4,-1,0.5,1)
\end{gathered}
$$

- Count-Min Sketch:

$$
\operatorname{Pr}\left[\widetilde{\mid f_{x}}-\left.f_{x}|+\epsilon||f|\right|_{1}\right] \geq 1-\delta
$$

- Count Sketch: Count-Min with random signs and median instead of min:

$$
\operatorname{Pr}\left[\left|\widetilde{\mid f_{x}}-f_{x}\right|+\epsilon| | f| |_{2}\right] \geq 1-\delta
$$

Count Sketch

- In addition to $H_{i}:[n] \rightarrow[w]$ use random signs $r[i] \rightarrow\{-1,1\}$

$$
c_{i, j}=\sum_{x: H_{i}(x)=j} r_{i}(x) f_{x}
$$

- Estimate:

$$
\hat{f}_{x}=\operatorname{median}\left(r_{1}(x) c_{1, H_{1}(x)}, \ldots, r_{d}(x) c_{d, H_{d}(x)}\right)
$$

- Parameters: $d=O\left(\log \frac{1}{\delta}\right), w=\frac{3}{\epsilon^{2}}$

$$
\operatorname{Pr}\left[\left|\widetilde{f}_{x}-f_{x}\right|+\epsilon\|f\|_{2}\right] \geq 1-\delta
$$

ℓ_{p}-Sampling

- Stream: m updates $\left(x_{i}, \Delta_{i}\right) \in[n] \times \mathbb{R}$ that define vector f where $f_{j}=\sum_{i: x_{i}=j} \Delta_{i}$.
- ℓ_{p}-Sampling: Return random $I \in[n]$ and $R \in \mathbb{R}$:

$$
\begin{gathered}
\operatorname{Pr}[I=i]=(1 \pm \epsilon) \frac{\left|f_{i}\right|^{p}}{\|f\|_{p}^{p}}+n^{-c} \\
R=(1 \pm \epsilon) f_{I}
\end{gathered}
$$

Application: Social Networks

- Each of n people in a social network is friends with some arbitrary set of other $n-1$ people
- Each person knows only about their friends
- With no communication in the network, each person sends a postcard to Mark Z.
- If Mark wants to know if the graph is connected, how long should the postcards be?

Optimal F_{k} estimation

- Last time: (ϵ, δ)-approximate F_{k}
$-\tilde{O}\left(n^{1-1 / k}\right)$ space for $F_{k}=\sum_{i}\left|f_{i}\right|^{k}$
- $\tilde{O}(\log n)$ space for F_{2}
- New algorithm: Let (I, R) be an ℓ_{2}-sample. Return $T=\widehat{F_{2}} R^{k-2}$, where $\widehat{F_{2}}$ is an $e^{ \pm \epsilon}$ estimate of F_{2}
- Expectation:

$$
\begin{aligned}
\mathbb{E}[T] & =\widehat{F_{2}} \sum_{i} \operatorname{Pr}[I=i]\left(e^{ \pm \epsilon} f_{i}\right)^{k-2} \\
& =e^{ \pm \epsilon k} F_{2} \sum_{i \in[n]} \frac{f_{i}^{2}}{F_{2}} f_{i}^{k-2}=e^{ \pm \epsilon k} F_{k}
\end{aligned}
$$

Optimal F_{k} estimation

- New algorithm: Let (I, R) be an ℓ_{2}-sample.

Return $T=\widehat{F_{2}} R^{k-2}$, where $\widehat{F_{2}}$ is an $e^{ \pm \epsilon}$ estimate of F_{2}

- Variance:

$$
\operatorname{Var}[T] \leq \mathbb{E}\left[T^{2}\right]=\sum_{i} \operatorname{Pr}[I=i] \mathbb{E}\left[T^{2} \mid I=i\right]
$$

$$
=e^{ \pm 2 \epsilon k} \sum_{i \in[n]} \frac{f_{i}^{2}}{F_{2}} F_{2}^{2} f_{i}^{2(k-2)}=e^{ \pm 2 \epsilon k} F_{2} F_{2 k-2} \leq e^{ \pm 2 \epsilon k} n^{1-\frac{2}{k}} F_{k}^{2}
$$

- Exercise: Show that $F_{2} F_{2 k-2} \leq n^{1-\frac{2}{k}} F_{k}^{2}$
- Overall: $\mathbb{E}[T]=e^{ \pm \epsilon k} F_{k}, \operatorname{Var}[T] \leq e^{ \pm 2 \epsilon k} n^{1-\frac{2}{k}} F_{k}^{2}$
- Apply average + median to $O\left(n^{1-\frac{2}{k}} \epsilon^{-2} \log \delta^{-1}\right)$ copies

ℓ_{2}-Sampling: Basic Overview

- Assume $F_{2}(f)=1$. Weight f_{i} by $\sqrt{w_{i}}=\sqrt{\frac{1}{u_{i}}}$, where $u_{i} \in_{R}[0,1]$:

$$
\begin{gathered}
f=\left(f_{1}, f_{2}, \ldots, f_{n}\right) \\
g=\left(g_{1}, g_{2}, \ldots, g_{n}\right) \text { where } g_{i}=\sqrt{w_{i}} f_{i}
\end{gathered}
$$

- For some value t, return $\left(i, f_{i}\right)$ if there is a unique i such that $g_{i}^{2} \geq t$
- Probability $\left(i, f_{i}\right)$ is returned if t is large enough:

$$
\begin{gathered}
\operatorname{Pr}\left[g_{i}^{2} \geq t \text { and } \forall j \neq i, g_{j}^{2}<t\right]=\operatorname{Pr}\left[g_{i}^{2} \geq t\right] \prod_{j \neq i} \operatorname{Pr}\left[g_{j}^{2}<t\right] \\
\quad=\operatorname{Pr}\left[u_{i} \leq \frac{f_{i}^{2}}{t}\right] \prod_{j \neq i} \operatorname{Pr}\left[u_{j}>\frac{f_{j}^{2}}{t}\right] \approx \frac{f_{i}^{2}}{t}
\end{gathered}
$$

- Probability some value is returned $\sum_{i} \frac{f_{i}^{2}}{t}=\frac{1}{t}$, repeat $O\left(t \log \frac{1}{\delta}\right)$ times.

ℓ_{2}-Sampling: Part 1

- Use Count-Sketch with parameters (m, d) to sketch g
- To estimate f_{i}^{2} :

$$
g_{i}^{2}=\operatorname{median}_{j}\left(c_{j, h_{j}(i)}^{2}\right) \text { and } \widehat{f_{i}^{2}}=\frac{\widehat{g_{i}^{2}}}{w_{i}}
$$

- Lemma: With high probability if $d=O(\log n)$

$$
\widehat{g_{i}^{2}}=g_{i}^{2} e^{ \pm \epsilon} \pm O\left(\frac{F_{2}(g)}{\epsilon m}\right)
$$

- Corollary: With high probability if $d=O(\log n)$ and $m \gg \frac{F_{2}(g)}{\epsilon}$,

$$
\widehat{f_{i}^{2}}=f_{i}^{2} e^{ \pm \epsilon} \pm \frac{1}{w_{i}}
$$

- Exercise: $\operatorname{Pr}\left[F_{2}(g) \leq c \log n\right] \leq \frac{99}{100}$ for large $c>0$.

Proof of Lemma

- Let $c_{j}=r_{j}(i) g_{i}+Z_{j}$
- By the analysis of Count Sketch $\mathbb{E}\left[Z_{j}^{2}\right] \leq \frac{F_{2}(g)}{m}$ and by Markov:

$$
\operatorname{Pr}\left[Z_{j}^{2} \leq \frac{3 F_{2}(g)}{m}\right] \geq \frac{2}{3}
$$

- If $\left|g_{i}\right| \geq \frac{2}{\epsilon}\left|Z_{j}\right|$, then $\left|c_{j, h_{j}(i)}\right|^{2}=e^{ \pm \epsilon}\left|g_{i}\right|^{2}$
- If $\left|g_{i}\right| \leq \frac{2}{\epsilon}\left|Z_{j}\right|$, then
$\left|c_{j, h_{j}(i)}^{2}\right| \leq\left(\left|g_{i}\right|+\left|Z_{j}\right|\right)^{2}-\left|g_{i}\right|^{2}=\left|Z_{j}\right|^{2}+2\left|g_{i} Z_{j}\right| \leq \frac{6\left|Z_{j}\right|^{2}}{\epsilon} \leq 18 \frac{F_{2}(g)}{\epsilon m}$ where the last inequality holds with probability $2 / 3$
- Take median over $d=O(\log n)$ repetitions \Rightarrow high probability

ℓ_{2}-Sampling: Part 2

- Let $s_{i}=1$ if $\widehat{f}_{i}^{2} w_{i} \geq \frac{4}{\epsilon}$ and $s_{i}=0$ otherwise
- If there is a unique i with $s_{i}=1$ then return $\left(i, \widehat{f}_{i}{ }^{2}\right)$.
- Note that if $\widehat{f}_{i}^{2} w_{i} \geq \frac{4}{\epsilon}$ then $\frac{1}{w_{i}} \leq \frac{\epsilon \widehat{f}_{i}^{2}}{4}$ and so

$$
\widehat{f}_{i}^{2}=f_{i}^{2} e^{ \pm \epsilon} \pm \frac{1}{w_{i}}=f_{i}^{2} e^{ \pm \epsilon} \pm \frac{\epsilon \widehat{\widehat{f}_{i}^{2}}}{4}
$$

therefore $f_{i}^{2}=e^{ \pm 4 \epsilon} \widehat{f}_{i}^{2}$

- Lemma: With probability $\Omega(\epsilon)$ there is a unique i such that $\mathrm{s}_{i}=1$. If so then $\operatorname{Pr}\left[i=i^{*}\right]=e^{ \pm 8 \epsilon} f_{i^{*}}^{2}$
- Thm: Repeat $\Omega\left(\epsilon^{-1} \log n\right)$ times. Space: $O\left(\epsilon^{-2}\right.$ polylog $\left.n\right)$

Proof of Lemma

- Let $\mathrm{t}=\frac{4}{\epsilon}$. We can upper-bound $\operatorname{Pr}\left[s_{i}=1\right]$:

$$
\operatorname{Pr}\left[s_{i}=1\right]=\operatorname{Pr}\left[\widehat{f}_{i}^{2} w_{i} \geq t\right] \leq \operatorname{Pr}\left[\frac{e^{4 \epsilon} f_{i}^{2}}{t} \geq u_{i}\right] \leq \frac{e^{4 \epsilon} f_{i}^{2}}{t}
$$

Similarly, $\operatorname{Pr}\left[s_{i}=1\right] \geq \frac{e^{-4 \epsilon} f_{i}^{2}}{t}$.

- Using independence of w_{i}, probability of unique i with $s_{i}=1$:

$$
\begin{gathered}
\sum_{i} \operatorname{Pr}\left[s_{i}=1, \sum_{j \neq i} s_{j}=0\right] \geq \sum_{i} \operatorname{Pr}\left[s_{i}=1\right]\left(1-\sum_{j \neq i} \operatorname{Pr}\left[s_{j}=1\right]\right) \\
\geq \sum_{i} \frac{e^{-4 \epsilon} f_{i}^{2}}{t}\left(1-\frac{\sum_{j \neq i} e^{4 \epsilon} f_{i}^{2}}{t}\right) \\
\geq \frac{e^{-4 \epsilon}\left(1-\frac{e^{4 \epsilon}}{t}\right)}{t} \approx 1 / t
\end{gathered}
$$

Proof of Lemma

- Let $\mathrm{t}=\frac{4}{\epsilon}$. We can upper-bound $\operatorname{Pr}\left[s_{i}=1\right]$:
$\operatorname{Pr}\left[s_{i}=1\right]=\operatorname{Pr}\left[\widehat{f}_{i}^{2} w_{i} \geq t\right] \leq \operatorname{Pr}\left[\frac{e^{4 \epsilon} f_{i}^{2}}{t} \geq u_{i}\right] \leq \frac{e^{4 \epsilon} f_{i}^{2}}{t}$
Similarly, $\operatorname{Pr}\left[s_{i}=1\right] \geq \frac{e^{-4 \epsilon} f_{i}^{2}}{t}$.
- We just showed:

$$
\sum_{i} \operatorname{Pr}\left[s_{i}=1, \sum_{j \neq i} s_{j}=0\right] \approx 1 / t
$$

- If there is a unique i , probability $i=i^{*}$ is:

$$
\frac{\operatorname{Pr}\left[s_{i^{*}}=1, \sum_{j \neq i} s_{j}=0\right]}{\sum_{i} \operatorname{Pr}\left[s_{i}=1, \sum_{j \neq i} s_{j}=0\right]}=e^{ \pm 8 \epsilon} f_{i^{*}}^{2}
$$

ℓ_{0}-sampling

- Maintain $\widetilde{F_{0}}$, and (1 ± 0.1)-approximation to F_{0}.
- Hash items using $h_{j}:[n] \rightarrow\left[0,2^{j}-1\right]$ for $j \in[\log n]$
- For each j, maintain:

$$
\begin{gathered}
D_{j}=(1 \pm 0.1)\left|\left\{t \mid h_{j}(t)=0\right\}\right| \\
S_{j}=\sum_{t, h_{j(t)}=0} f_{t} i_{t} \\
C_{j}=\sum_{t, h_{j}(t)=0} f_{t}
\end{gathered}
$$

- Lemma: At level $j=2+\left\lceil\log \widetilde{F_{0}}\right\rceil$ there is a unique element in the streams that maps to 0 (with constant probability)
- Uniqueness is verified if $D_{j}=1 \pm 0.1$. If so, then output S_{j} / C_{j} as the index and C_{j} as the count.

Proof of Lemma

- Let $j=\left\lceil\log \widetilde{F_{0}}\right\rceil$ and note that $2 F_{0}<2^{j}<12 F_{0}$
- For any $i, \operatorname{Pr}\left[h_{j}(i)=0\right]=\frac{1}{2^{j}}$
- Probability there exists a unique i such that $h_{j}(i)=0$,

$$
\begin{gathered}
\sum_{i} \operatorname{Pr}\left[h_{j}(i)=0 \text { and } \forall k \neq i, h_{j}(k) \neq 0\right] \\
=\sum_{i} \operatorname{Pr}\left[h_{j}(i)=0\right] \operatorname{Pr}\left[\forall k \neq i, h_{j}(k) \neq 0 \mid h_{j(i)}=0\right] \\
\geq \sum_{i} \operatorname{Pr}\left[h_{j}(i)=0\right]\left(1-\sum_{k \neq i} \operatorname{Pr}\left[h_{j}(k)=0 \mid h_{j}(i)=0\right]\right) \\
=\sum_{i} \operatorname{Pr}\left[h_{j}(i)=0\right]\left(1-\sum_{k \neq i} \operatorname{Pr}\left[h_{j}(k)=0\right]\right) \geq \sum_{i} \frac{1}{2^{j}}\left(1-\frac{F_{0}}{2^{j}}\right) \geq \frac{1}{24}
\end{gathered}
$$

- Holds even if h_{j} are only 2-wise independent

