
CIS 700:
“algorithms for Big Data”

Grigory Yaroslavtsev
http://grigory.us

Lecture 2: Streaming
Slides at http://grigory.us/big-data-class.html

http://grigory.us/
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html

Recap

• (Markov) For every 𝑐 > 0 (and non-negative 𝑿):

Pr 𝑿 ≥ 𝑐 𝔼 𝑿 ≤
1

𝑐

• (Chebyshev) For every 𝑐 > 0:

Pr 𝑿 − 𝔼 𝑿 ≥ 𝑐 𝔼 𝑿 ≤
𝑉𝑎𝑟 𝑿

𝑐 𝔼 𝑿 2

• (Chernoff) Let 𝑿1 … 𝑿𝒕 be independent and
identically distributed r.vs with range [0, c] and
expectation 𝜇. Then if 𝑋 =

1

𝒕
 𝑋𝑖𝑖 and 1 > 𝛿 > 0,

Pr 𝑋 − 𝜇 ≥ 𝛿𝜇 ≤ 2 exp −
𝒕𝜇𝛿2

3𝑐

This week

• Approximate counting (Morris’s alg.) continued

• Approximate Median

• Alon-Mathias-Szegedy Sampling

• Frequency Moments

• Distinct Elements

• Count-Min

Morris’s Algorithm

• (Very hard, “Count the number of items”)

– What is the total number of items up to error
± 𝜖𝑛?

– You have 𝑂(log log 𝑛 /𝜖2) space and can be
completely wrong with some small probability

Morris’s Algorithm: Alpha-version

Maintains a counter 𝑋 using log log 𝑛 bits

• Initialize 𝑋 to 0

• When an item arrives, increase X by 1 with

probability
1

2𝑋

• When the stream is over, output 2𝑋 − 1

Claim: 𝔼 2𝑋 = 𝑛 + 1

Morris’s Algorithm: Alpha-version

Maintains a counter 𝑋 using log log 𝑛 bits

• Initialize 𝑋 to 0, when an item arrives, increase X

by 1 with probability
1

2𝑋

Claim: 𝔼 2𝑋 = 𝑛 + 1

• Let the value after seeing 𝑛 items be 𝑋𝑛

𝔼 2𝑋𝑛 = Pr ,𝑋𝑛−1 = 𝑗 -𝔼 2𝑋𝑛|𝑋𝑛−1 = 𝑗

∞

𝑗=0

= Pr ,𝑋𝑛−1 = 𝑗 -
1

2𝑗 2
𝑗+1 + 1 −

1

2𝑗 2𝑗∞
𝑗=0

= Pr ,𝑋𝑛−1 = 𝑗 - 2𝑗 + 1 ∞
𝑗=0 = 1 + 𝔼 2𝑋𝑛−1

Morris’s Algorithm: Alpha-version

Maintains a counter 𝑋 using log log 𝑛 bits
• Initialize 𝑋 to 0, when an item arrives, increase X by 1 with

probability
1

2𝑋

Claim: 𝔼 22𝑋 =
3

2
𝑛2 +

3

2
𝑛 + 1

𝔼 22𝑋𝑛 = Pr ,2𝑋𝑛−1 = 𝑗 -𝔼 22𝑋𝑛|2𝑋𝑛−1 = 𝑗

∞

𝑗=0

= Pr ,2𝑋𝑛−1 = 𝑗 -
1

𝑗
 4 𝑗2 + 1 −

1

𝑗
𝑗2∞

𝑗=0

= Pr ,2𝑋𝑛−1 = 𝑗 - 𝑗2 + 3𝑗 = 𝔼 22𝑋𝑛−1 + 3𝔼 2𝑋𝑛−1

∞

𝑗=0

= 3
n − 1 2

2
+ 3(n − 1)/2 + 1 + 3n

Morris’s Algorithm: Alpha-version

Maintains a counter 𝑋 using log log 𝑛 bits

• Initialize 𝑋 to 0, when an item arrives,

increase X by 1 with probability
1

2𝑋

• 𝔼,2𝑋- = n + 1, 𝑉𝑎𝑟 2𝑋 = 𝑂 𝑛2

• Is this good?

Morris’s Algorithm: Beta-version

Maintains 𝑡 counters 𝑋1, … , 𝑋𝑡 using log log 𝑛 bits
for each

• Initialize 𝑋𝑖′𝑠 to 0, when an item arrives, increase

each 𝑋𝑖 by 1 independently with probability
1

2𝑋𝑖

• Output Z =
1

𝑡
(2𝑋𝑖

 − 1)𝑡
𝑖=1

• 𝔼,2𝑋𝑖- = n + 1, 𝑉𝑎𝑟 2𝑋𝑖 = 𝑂 𝑛2

• 𝑉𝑎𝑟 𝑍 = 𝑉𝑎𝑟
1

𝑡
 2𝑋𝑗𝑡

𝑗=1 − 1 = 𝑂
𝑛2

𝑡

• Claim: If 𝑡 ≥
𝑐

𝜖2 then Pr 𝑍 − 𝑛 > 𝜖𝑛 < 1/3

Morris’s Algorithm: Beta-version

Maintains 𝑡 counters 𝑋1, … , 𝑋𝑡 using log log 𝑛
bits for each

• Output Z =
1

𝑡
(2𝑋𝑖

 − 1)𝑡
𝑖=1

• 𝑉𝑎𝑟 𝑍 = 𝑉𝑎𝑟
1

𝑡
 2𝑋𝑗𝑡

𝑗=1 − 1 = 𝑂
𝑛2

𝑡

• Claim: If 𝑡 ≥
𝑐

𝜖2 then Pr 𝑍 − 𝑛 > 𝜖𝑛 < 1/3

– Pr 𝑍 − 𝑛 > 𝜖 𝑛 <
𝑉𝑎𝑟,𝑍-

𝜖2𝑛2 = 𝑂
𝑛2

𝑡
⋅

1

𝜖2𝑛2

– If 𝑡 ≥
𝑐

𝜖2 we can make this at most
1

3

Morris’s Algorithm: Final

• What if I want the probability of error to be
really small, i.e. Pr 𝑍 − 𝑛 > 𝜖 𝑛 ≤ 𝛿?

• Same Chebyshev-based analysis: 𝑡 = 𝑂
1

𝜖2𝛿

• Do these steps 𝑚 = 𝑂 log
1

𝛿
 times

independently in parallel and output the
median answer.

• Total space: 𝑂
log log 𝑛⋅log

1

𝛿

𝜖2

Morris’s Algorithm: Final

• Do these steps 𝑚 = 𝑂 log
1

𝛿
 times independently in

parallel and output the median answer

𝑍𝑚𝑒𝑑 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑍1, … , 𝑍𝑚)

• Each 𝑍𝑖 computed as before:

Maintain 𝑡 counters 𝑋1, … , 𝑋𝑡 using log log 𝑛 bits for each

• Initialize 𝑋𝑖′𝑠 to 0, when an item arrives, increase each

𝑋𝑖 by 1 independently with probability
1

2𝑋𝑖

• Output Z =
1

𝑡
(2𝑋𝑖

 − 1)𝑡
𝑖=1

Morris’s Algorithm: Final Analysis

Claim: Pr 𝑍𝑚𝑒𝑑 − 𝑛 > 𝜖 𝑛 ≤ 𝛿

• Let 𝑌𝑖 be an indicator r.v. for the event that
𝑍𝑖 − 𝑛 ≤ 𝜖𝑛, where 𝑍𝑖 is the i-th trial.

• Let 𝑌= 𝑌𝑖𝑖 .

• Pr 𝑍𝑚𝑒𝑑 − 𝑛 > 𝜖𝑛 ≤ Pr 𝑌 ≤
𝑚

2
≤

Pr 𝑌 − 𝔼 𝑌 ≥
𝑚

6
≤ Pr 𝑌 − 𝔼 𝑌 ≥

𝜇

4
≤

exp −𝑐
1

42

2𝑚

3
< exp −𝑐′ log

1

𝛿
< 𝛿

Data Streams

• Stream: 𝒎 elements from universe 𝒏 =
*1, 2, … , 𝒏+, e.g.

𝑥1, 𝑥2, … , 𝑥𝒎 = 〈5, 8, 1, 1, 1, 4, 3, 5, … , 10〉

• Example:

Approximate Median

• 𝑆 = *𝑥1, … , 𝑥𝑚+ (all distinct) and let
𝑟𝑎𝑛𝑘 𝑦 = |𝑥 ∈ 𝑆 ∶ 𝑥 ≤ 𝑦|

• Problem: Find 𝜖-approximate median, i.e. 𝑦 such
that

𝑚

2
− 𝜖𝑚 < 𝑟𝑎𝑛𝑘 𝑦 <

𝑚

2
+ 𝜖𝑚

• Exercise: Can we approximate the value of the
median with additive error ±𝜖𝑛 in sublinear time?

• Algorithm: Return the median of a sample of size 𝑡
taken from 𝑆 (with replacement).

Approximate Median

• Problem: Find 𝜖-approximate median, i.e. 𝑦
such that

𝑚

2
− 𝜖𝑚 < 𝑟𝑎𝑛𝑘 𝑦 <

𝑚

2
+ 𝜖𝑚

• Algorithm: Return the median of a sample of
size 𝑡 taken from 𝑆 (with replacement).

• Claim: If 𝑡 =
7

𝜖2 log
2

𝛿
 then this algorithm gives 𝜖-

median with probability 1 − 𝛿

Approximate Median
• Partition 𝑆 into 3 groups

𝑺𝑳 = 𝑥 ∈ 𝑆: 𝑟𝑎𝑛𝑘 𝑥 ≤
𝑚

2
− 𝜖𝑚

𝑺𝑴 = 𝑥 ∈ 𝑆:
𝑚

2
− 𝜖𝑚 ≤ 𝑟𝑎𝑛𝑘 𝑥 ≤

𝑚

2
+ 𝜖𝑚

𝑺𝑼 = 𝑥 ∈ 𝑆: 𝑟𝑎𝑛𝑘 𝑥 ≥
𝑚

2
+ 𝜖𝑚

• Key fact: If less than
𝑡

2
 elements from each of 𝑺𝑳 and 𝑺𝑼 are

in sample then its median is in 𝑺𝑴
• Let 𝑿𝑖 = 1 if 𝑖-th sample is in 𝑺𝑳 and 0 otherwise.

• Let 𝑿 = 𝑿𝒊 𝑖
. By Chernoff, if 𝑡 >

7

𝜖2 log
2

𝛿

Pr 𝑿 ≥
𝑡

2
≤ Pr 𝑿 ≥ 1 + 𝜖 𝔼 𝑿 ≤ 𝑒−

𝜖2 1
2−𝜖 𝑡

3 ≤
𝛿

2

• Same for 𝑺𝑼 + union bound ⇒ error probability ≤ 𝛿

Data Streams

• Stream: 𝒎 elements from universe 𝒏 =
*1, 2, … , 𝒏+, e.g.

𝑥1, 𝑥2, … , 𝑥𝒎 = 〈5, 8, 1, 1, 1, 4, 3, 5, … , 10〉

• 𝑓𝑖 = frequency of 𝑖 in the stream = # of
occurrences of value 𝑖

𝑓 = 〈𝑓1, … , 𝑓𝒏〉

AMS Sampling

• Problem: Estimate 𝑔(𝑓𝑖)𝑖∈,𝑛- , for an arbitrary
function 𝑔 with 𝑔 0 = 0.

• Estimator: Sample 𝑥𝑱, where 𝑱 is sampled uniformly at
random from ,𝑚- and compute:

𝑟 = 𝑗 ≥ 𝑱 ∶ 𝑥𝑗 = 𝑥𝑱

Output: 𝑿 = 𝑚(𝑔 𝑟 − 𝑔(𝑟 − 1))
• Expectation:

𝔼 𝑿 = Pr 𝑥𝑱 = 𝑖 𝔼,𝑿|𝑥𝑱 = 𝑖-

𝑖

=
𝑓𝑖

𝑚

𝑚 𝑔 𝑟 − 𝑔 𝑟 − 1

𝑓𝑖

𝑓𝑖

𝑟=1𝑖

= 𝑔 𝑓𝑖

𝑖

Frequency Moments

• Define 𝐹𝑘 = 𝑓𝑖
𝑘

𝑖 for 𝑘 ∈ *0,1,2, … +

– 𝐹0 = # number of distinct elements

– 𝐹1 = # elements

– 𝐹2 = “Gini index”, “surprise index”

Frequency Moments

• Define 𝐹𝑘 = 𝑓𝑖
𝑘

𝑖 for 𝑘 ∈ *0,1,2, … +

• Use AMS estimator with 𝑿 = 𝑚 𝑟𝑘 − 𝑟 − 1 𝑘

𝔼 𝑿 = 𝐹𝑘

• Exercise: 0 ≤ 𝑿 ≤ 𝑚 𝑘 𝑓∗
𝑘−1, where 𝑓∗ = max

𝑖
𝑓𝑖

• Repeat 𝑡 times and take average 𝑿 . By Chernoff:

Pr 𝑿 − 𝐹𝑘 ≥ 𝜖𝐹𝑘 ≤ 2 exp −
𝑡𝐹𝑘𝜖2

3𝑚 𝑘 𝑓∗
𝑘−1

• Taking 𝑡 =
3𝑚𝑘𝑓∗

𝑘−1 log
1

𝛿

𝜖2𝐹𝑘
 gives Pr 𝑿 − 𝐹𝑘 ≥ 𝜖𝐹𝑘 ≤ 𝛿

Frequency Moments

• Lemma:
𝑚𝑓∗

𝑘−1

𝐹𝑘
≤ 𝑛1−1/𝑘

• Result:

𝑡 =
3𝑚𝑘𝑓∗

𝑘−1 log
1

𝛿

𝜖2𝐹𝑘
= 𝑂

𝑘𝑛
1−

1
𝑘 log

1

𝛿

𝜖2 (log 𝑛 + log 𝑚)

memory suffices for 𝜖, 𝛿 -approximation of 𝐹𝑘
• Question: What if we don’t know 𝑚?
• Then we can use probabilistic guessing (similar to

Morris’s algorithm), replacing log 𝑛 with log 𝑛𝑚.

Frequency Moments

• Lemma:
𝑚𝑓∗

𝑘−1

𝐹𝑘
≤ 𝑛1−1/𝑘

• Exercise: 𝐹𝑘 ≥ 𝑛
𝑚

𝑛

𝑘
(Hint: worst-case when 𝑓1 = ⋯ =

𝑓𝑛 =
𝑚

𝑛
. Use convexity of 𝑔 𝑥 = 𝑥𝑘).

• Case 1: 𝑓∗
𝑘 ≤ 𝑛

𝑚

𝑛

𝑘

𝑚𝑓∗
𝑘−1

𝐹𝑘
≤

𝑚𝑛1−
1
𝑘

𝑚
𝑛

𝑘−1

𝑛
𝑚
𝑛

𝑘
= 𝑛1−

1
𝑘

Frequency Moments

• Lemma:

𝑚𝑓∗
𝑘−1

𝐹𝑘
≤ 𝑛1−1/𝑘

• Case 2: 𝑓∗
𝑘 ≥ 𝑛

𝑚

𝑛

𝑘

𝑚𝑓∗
𝑘−1

𝐹𝑘
≤

𝑚𝑓∗
𝑘−1

𝑓∗
𝑘

≤
𝑚

𝑓∗
≤

𝑚

𝑛
1
𝑘

𝑚
𝑛

= 𝑛1−
1
𝑘

Hash Functions

• Definition: A family 𝐻 of functions from 𝐴 → 𝐵 is 𝑘-wise
independent if for any distinct 𝑥1, … , 𝑥𝑘 ∈ 𝐴 and 𝑖1, … 𝑖𝑘 ∈
𝐵:

Pr
ℎ∈𝑅𝐻

 𝑥1 = 𝑖1, 𝑥2 = 𝑖2, … , 𝑥𝑘 = 𝑖𝑘 =
1

𝐵 𝑘

• Example: If 𝐴 ⊆ 0, … , 𝑝 − 1 , 𝐵 = 0, … , 𝑝 − 1 for prime 𝑝

𝐻 = 𝑥 = 𝑎𝑖𝑥
𝑖

𝑘−1

𝑖=0

 𝑚𝑜𝑑 𝑝: 0 ≤ 𝑎0, 𝑎1, … , 𝑎𝑘−1 ≤ 𝑝 − 1

is a 𝑘-wise independent family of hash functions.

Linear Sketches

• Sketching algorithm: picks a random matrix
𝑍 ∈ 𝑅𝑘×𝑛, where 𝑘 ≪ 𝑛 and computes 𝑍𝑓.

• Can be incrementally updated:

– We have a sketch 𝑍𝑓

– When 𝑖 arrives, new frequencies are 𝑓′ = 𝑓 + 𝑒𝑖

– Updating the sketch:

𝑍𝑓′ = 𝑍 𝑓 + 𝑒𝑖 = 𝑍𝑓 + 𝑍𝑒𝑖 = 𝑍𝑓 +(i-th column of 𝑍)

• Need to choose random matrices carefully

𝐹2

• Problem: 𝜖, 𝛿 -approximation for 𝐹2 = 𝑓𝑖
2

𝑖

• Algorithm:
– Let 𝑍 ∈ −1,1 𝑘×𝑛, where entries of each row are 4-

wise independent and rows are independent

– Don’t store the matrix: 𝑘 4-wise independent hash
functions 𝜎

– Compute 𝑍𝑓, average squared entries “appropriately”

• Analysis:
– Let 𝑠 be any entry of 𝑍𝑓.

– Lemma: 𝔼 𝑠2 = 𝐹2

– Lemma: Var 𝑠2 ≤ 2𝐹2
2

𝐹2: Expectaton

• Let 𝜎 be a row of 𝑍 with entries 𝜎𝑖 ∈𝑅 −1,1 .

𝔼 𝑠2 = 𝔼 𝜎𝑖𝑓𝑖

𝑛

𝑖=1

2

= 𝔼 𝜎𝑖
2𝑓𝑖

2

𝑛

𝑖=1

+ 𝔼,𝜎𝑖𝜎𝑗𝑓𝑖𝑓𝑗-

𝑖≠𝑗

= 𝔼 𝑓𝑖
2

𝑛

𝑖=1

+ 𝔼,𝜎𝑖𝜎𝑗-𝑓𝑖𝑓𝑗
𝑖≠𝑗

= 𝐹2 + 𝔼 𝜎𝑖 𝔼 𝜎𝑗 𝑓𝑖𝑖≠𝑗 𝑓𝑗 = 𝐹2

• We used 2-wise independence for 𝔼 𝜎𝑖𝜎𝑗 = 𝔼 𝜎𝑖 𝔼 𝜎𝑗 .

𝐹2: Variance

𝔼 (𝑋2−𝔼𝑋2 2- = 𝔼 𝜎𝑖𝜎𝑗𝑓𝑖𝑓𝑗
𝑖≠𝑗

2

= 𝔼 2 𝜎𝑖
2𝜎𝑗

2𝑓𝑖
2𝑓𝑗

2

𝑖≠𝑗

+ 4 𝜎𝑖
2𝜎𝑗𝜎𝑘

𝑖≠𝑗≠𝑘

𝑓𝑖
2𝑓𝑗𝑓𝑘

+ 24 𝜎𝑖𝜎𝑗𝜎𝑘𝜎𝑙𝑓𝑖𝑓𝑗𝑓𝑘𝑓𝑙

𝑖<𝑗<𝑘<𝑙

= 2 𝑓𝑖
2𝑓𝑗

2

𝑖≠𝑗

+ 4 𝔼 σ𝑗𝜎𝑘 𝑓𝑖
2𝑓𝑗𝑓𝑘

𝑖≠𝑗≠𝑘

+ 24 𝔼,𝜎𝑖𝜎𝑗𝜎𝑘𝜎𝑙-𝑓𝑖𝑓𝑗𝑓𝑘𝑓𝑙

𝑖<𝑗<𝑘<𝑙

≤ 2 𝐹2
2

• 𝔼 𝜎𝑖𝜎𝑗𝜎𝑘𝜎𝑙 = 𝔼 𝜎𝑖-𝔼 𝜎𝑗 𝔼,𝜎𝑘-𝔼,𝜎𝑙 = 0 by 4-wise independence

𝐹0: Distinct Elements

• Problem: (𝜖, 𝛿)-approximation for 𝐹0 = 𝑓𝑖
0

𝑖

• Simplified: For fixed 𝑇 > 0, with prob. 1 − 𝛿
distinguish:

𝐹0 > 1 + 𝜖 𝑇 vs. 𝐹0 < 1 − 𝜖 𝑇

• Original problem reduces by trying 𝑂
log 𝑛

𝜖

values of T:
𝑇 = 1, 1 + 𝜖 , 1 + 𝜖 2, … , 𝑛

𝐹0: Distinct Elements

• Simplified: For fixed 𝑇 > 0, with prob. 1 − 𝛿
distinguish:

𝐹0 > 1 + 𝜖 𝑇 vs. 𝐹0 < 1 − 𝜖 𝑇

• Algorithm:
– Choose random sets 𝑆1, … , 𝑆𝑘 ⊆ ,𝑛- where

Pr 𝑖 ∈ 𝑆𝑗 =
1

𝑇

– Compute 𝑠𝑗 = 𝑓𝑖𝑖∈𝑆𝑗

– If at least 𝑘/𝑒 of the values 𝑠𝑗 are zero, output
𝐹0 < 1 − 𝜖 𝑇

𝐹0 > 1 + 𝜖 𝑇 vs. 𝐹0 < 1 − 𝜖 𝑇

• Algorithm:
– Choose random sets 𝑆1, … , 𝑆𝑘 ⊆ ,𝑛- where Pr 𝑖 ∈ 𝑆𝑗 =

1

𝑇

– Compute 𝑠𝑗 = 𝑓𝑖𝑖∈𝑆𝑗

– If at least 𝑘/𝑒 of the values 𝑠𝑗 are zero, output
𝐹0 < 1 − 𝜖 𝑇

• Analysis:

– If 𝐹0 > 1 + 𝜖 𝑇, then Pr 𝑠𝑗 = 0 <
1

𝑒
 −

𝜖

3

– If 𝐹0 < 1 − 𝜖 𝑇, then Pr 𝑠𝑗 = 0 >
1

𝑒
 +

𝜖

3

– Chernoff: 𝑘 = 𝑂
1

𝜖2 log
1

𝛿
 gives correctness w.p. 1 − 𝛿

𝐹0 > 1 + 𝜖 𝑇 vs. 𝐹0 < 1 − 𝜖 𝑇

• Analysis:

– If 𝐹0 > 1 + 𝜖 𝑇, then Pr 𝑠𝑗 = 0 <
1

𝑒
 −

𝜖

3

– If 𝐹0 < 1 − 𝜖 𝑇, then Pr 𝑠𝑗 = 0 >
1

𝑒
 +

𝜖

3

• If 𝑇 is large and 𝜖 is small then:

Pr 𝑠𝑗 = 0 = 1 −
1

𝑇

𝐹0
≈ 𝑒−

𝐹0
𝑇

• If 𝐹0 > 1 + 𝜖 𝑇:

𝑒−
𝐹0
𝑇 ≤ 𝑒− 1+𝜖 ≤

1

𝑒
−

𝜖

3

• If 𝐹0 < 1 − 𝜖 𝑇:

𝑒−
𝐹0
𝑇 ≥ 𝑒− 1 −𝜖 ≥

1

𝑒
+

𝜖

3

Count-Min Sketch

• https://sites.google.com/site/countminsketch/
• Stream: 𝒎 elements from universe 𝒏 =

*1, 2, … , 𝒏+, e.g.
𝑥1, 𝑥2, … , 𝑥𝒎 = 〈5, 8, 1, 1, 1, 4, 3, 5, … , 10〉

• 𝑓𝑖 = frequency of 𝑖 in the stream = # of
occurrences of value 𝑖, 𝑓 = 〈𝑓1, … , 𝑓𝒏〉

• Problems:
– Point Query: For 𝑖 ∈ 𝑛 estimate 𝑓𝑖

– Range Query: For 𝑖, 𝑗 ∈ ,𝑛- estimate 𝑓𝑖 + ⋯ + 𝑓𝑗
– Quantile Query: For 𝜙 ∈ ,0,1- find 𝑗 with 𝑓1 + ⋯ +

𝑓𝑗 ≈ 𝜙𝑚
– Heavy Hitters: For 𝜙 ∈ ,0,1- find all 𝑖 with 𝑓𝑖 ≥ 𝜙𝑚

https://sites.google.com/site/countminsketch/
https://sites.google.com/site/countminsketch/

Count-Min Sketch: Construction

• Let 𝐻1, … , 𝐻𝑑: 𝑛 → ,𝑤- be 2-wise
independent hash functions

• We maintain 𝑑 ⋅ 𝑤 counters with values:

𝑐𝑖,𝑗 = # elements 𝑒 in the stream with 𝐻𝑖 𝑒 = 𝑗

• For every 𝑥 the value 𝑐𝑖,𝐻𝑖(𝑥) ≥ 𝑓𝑥 and so:

𝑓𝑥 ≤ 𝑓𝑥 = min (𝑐1,𝐻1 𝑥 , … , 𝑐𝑑,𝐻1 𝑑)

• If 𝑤 =
2

𝜖
 and 𝑑 = log2

1

𝛿
 then:

Pr 𝑓𝑥 ≤ 𝑓𝑥 ≤ 𝑓𝑥 + 𝜖𝑚 ≥ 1 − 𝛿.

Count-Min Sketch: Analysis

• Define random variables 𝒁1 … , 𝒁𝑘 such that 𝑐𝑖,𝐻𝑖(𝑥) = 𝑓𝑥 + 𝒁𝑖

𝒁𝑖 = 𝑓𝑦
𝑦≠𝑥,𝐻𝑖 𝑦 =𝐻𝑖(𝑥)

• Define 𝑿𝑖,𝑦 = 1 if 𝐻𝑖 𝑦 = 𝐻𝑖(𝑥) and 0 otherwise:

𝒁𝑖 = 𝑓𝑦𝑿𝑖,𝑦

𝑦≠𝑥

• By 2-wise independence:

𝔼 𝒁𝑖 = 𝑓𝑦𝑦≠𝑥 𝔼 𝑿𝑖,𝑦 = 𝑓𝑦𝑦≠𝑥 Pr 𝐻𝑖 𝑦 = 𝐻𝑖 𝑥 ≤
𝑚

𝑤

• By Markov inequality,

Pr 𝒁𝑖 ≥ 𝜖𝑚 ≤
1

𝑤 𝜖
=

1

2

Count-Min Sketch: Analysis

• All 𝑍𝑖 are independent

Pr 𝑍𝑖 ≥ 𝜖𝑚 𝑓𝑜𝑟 𝑎𝑙𝑙 1 ≤ 𝑖 ≤ 𝑑 ≤
1

2

𝑑

= 𝛿

• With prob. 1 − 𝛿 there exists 𝑗 such that 𝑍𝑗 ≤ 𝜖𝑚

𝑓𝑥 = min 𝑐1,𝐻1 𝑥 , … , 𝑐𝑑,𝐻𝑑 𝑥 =

= min 𝑓𝑥 , +𝑍1 … , 𝑓𝑥 + 𝑍𝑑 ≤ 𝑓𝑥 + 𝜖𝑚

• CountMin estimates values 𝑓𝑥 up to ±𝜖𝑚 with total

memory 𝑂
log 𝑚 log

1

𝛿

𝜖2 `

Dyadic Intervals

• Define log 𝑛 partitions of 𝑛 :
𝐼0 = 1,2,3, … 𝑛

𝐼1 = 1,2 , 3,4 , … , 𝑛 − 1, 𝑛

𝐼2 = * 1,2,3,4 , 5,6,7,8 , … , *𝑛 − 3, 𝑛 − 2, 𝑛 − 1, 𝑛++

…
Ilog n = **1, 2,3, … , 𝑛++

• Exercise: Any interval (𝑖, 𝑗) can be written as a disjoint
union of at most 2 log 𝑛 such intervals.

• Example: For 𝑛 = 256: 48,107 = 48,48 ∪ 49,64 ∪
65,96 ∪ 97,104 ∪ 105,106 ∪ 107,107

Count-Min: Range Queries and Quantiles

• Range Query: For 𝑖, 𝑗 ∈ ,𝑛- estimate 𝑓𝑖 + ⋯ 𝑓𝑗

• Approximate median: Find 𝑗 such that:

𝑓1 + ⋯ + 𝑓𝑗 ≥
𝑚

2
+ 𝜖𝑚 and

𝑓1 + ⋯ + 𝑓𝑗−1 ≤
𝑚

2
− 𝜖𝑚

Count-Min: Range Queries and Quantiles

• Algorithm: Construct log 𝑛 Count-Min sketches,
one for each 𝐼𝑖 such that for any 𝐼 ∈ 𝐼𝑖 we have

an estimate 𝑓 𝑙 for 𝑓𝑙 such that:

Pr 𝑓𝑙 ≤ 𝑓𝑙
 ≤ 𝑓𝑙 + 𝜖𝑚 ≥ 1 − 𝛿

• To estimate 𝑖, 𝑗 , let 𝐼1 … , 𝐼𝑘 be decomposition:

𝑓,𝑖,𝑗-
 = 𝑓𝑙1

 + ⋯ + 𝑓𝑙𝑘

• Hence,

Pr 𝑓 𝑖,𝑗 ≤ 𝑓 𝑖,𝑗
 ≤ 2 𝜖𝑚 log 𝑛 ≥ 1 − 2𝛿 log 𝑛

Count-Min: Heavy Hitters

• Heavy Hitters: For 𝜙 ∈ ,0,1- find all 𝑖 with 𝑓𝑖 ≥ 𝜙𝑚
but no elements with 𝑓𝑖 ≤ (𝜙 − 𝜖)𝑚

• Algorithm:
– Consider binary tree whose leaves are [n] and

associate internal nodes with intervals
corresponding to descendant leaves

– Compute Count-Min sketches for each 𝐼𝑖

– Level-by-level from root, mark children 𝐼 of
marked nodes if 𝑓𝑙

 ≥ 𝜙𝑚

– Return all marked leaves

• Finds heavy-hitters in 𝑂(𝜙−1 log 𝑛) steps

