
CIS 700:  
“algorithms for Big Data” 

Grigory Yaroslavtsev 
http://grigory.us 

Lecture 2: Streaming 
Slides at http://grigory.us/big-data-class.html 

http://grigory.us/
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html


Recap 

• (Markov) For every 𝑐 > 0 (and non-negative 𝑿): 

Pr 𝑿 ≥ 𝑐 𝔼 𝑿 ≤
1

𝑐
 

• (Chebyshev) For every 𝑐 > 0: 

Pr 𝑿 − 𝔼 𝑿 ≥ 𝑐 𝔼 𝑿 ≤
𝑉𝑎𝑟 𝑿

𝑐 𝔼 𝑿 2
 

• (Chernoff) Let 𝑿1 … 𝑿𝒕 be independent and 
identically distributed r.vs with range [0, c] and 
expectation 𝜇. Then if 𝑋 =

1

𝒕
 𝑋𝑖𝑖  and 1 > 𝛿 > 0, 

Pr 𝑋 − 𝜇 ≥ 𝛿𝜇 ≤ 2 exp −
𝒕𝜇𝛿2

3𝑐
 

 
 

 



This week 

• Approximate counting (Morris’s alg.) continued  

• Approximate Median 

• Alon-Mathias-Szegedy Sampling 

• Frequency Moments 

• Distinct Elements 

• Count-Min 



Morris’s Algorithm 

• (Very hard, “Count the number of items”) 

– What is the total number of items up to error 
± 𝜖𝑛?  

– You have 𝑂(log log 𝑛 /𝜖2) space and can be 
completely wrong with some small probability  

 



Morris’s Algorithm: Alpha-version  

Maintains a counter 𝑋 using log log 𝑛 bits 

• Initialize 𝑋 to 0 

• When an item arrives, increase X by 1 with 

probability 
1

2𝑋  

• When the stream is over, output 2𝑋 − 1 

 

Claim: 𝔼 2𝑋 = 𝑛 + 1  



Morris’s Algorithm: Alpha-version  

Maintains a counter 𝑋 using log log 𝑛 bits 

• Initialize 𝑋 to 0, when an item arrives, increase X 

by 1 with probability 
1

2𝑋  

Claim: 𝔼 2𝑋 = 𝑛 + 1  

• Let the value after seeing 𝑛 items be 𝑋𝑛 

𝔼 2𝑋𝑛 =  Pr ,𝑋𝑛−1 = 𝑗 -𝔼 2𝑋𝑛|𝑋𝑛−1 = 𝑗

∞

𝑗=0

 

=   Pr ,𝑋𝑛−1 = 𝑗 -
1

2𝑗  2
𝑗+1 + 1 −

1

2𝑗 2𝑗∞
𝑗=0  

=  Pr ,𝑋𝑛−1 = 𝑗 - 2𝑗 + 1  ∞
𝑗=0 = 1 + 𝔼 2𝑋𝑛−1  

 

 

 



Morris’s Algorithm: Alpha-version  

Maintains a counter 𝑋 using log log 𝑛 bits 
• Initialize 𝑋 to 0, when an item arrives, increase X by 1 with 

probability 
1

2𝑋  

Claim: 𝔼 22𝑋 =
3

2
𝑛2 +

3

2
𝑛 + 1  

𝔼 22𝑋𝑛 =  Pr ,2𝑋𝑛−1 = 𝑗 -𝔼 22𝑋𝑛|2𝑋𝑛−1 = 𝑗

∞

𝑗=0

 

=  Pr ,2𝑋𝑛−1 = 𝑗 -
1

𝑗
 4 𝑗2 + 1 −

1

𝑗
𝑗2∞

𝑗=0  

=  Pr ,2𝑋𝑛−1 = 𝑗 - 𝑗2 + 3𝑗 = 𝔼 22𝑋𝑛−1 + 3𝔼 2𝑋𝑛−1  

∞

𝑗=0

 

= 3
n − 1 2

2
+ 3(n − 1)/2  + 1 + 3n 

 
 
 
 



Morris’s Algorithm: Alpha-version  

Maintains a counter 𝑋 using log log 𝑛 bits 

• Initialize 𝑋 to 0, when an item arrives, 

increase X by 1 with probability 
1

2𝑋  

• 𝔼,2𝑋- = n + 1, 𝑉𝑎𝑟 2𝑋 = 𝑂 𝑛2   

• Is this good? 



Morris’s Algorithm: Beta-version  

Maintains 𝑡 counters 𝑋1, … , 𝑋𝑡 using log log 𝑛 bits 
for each 

• Initialize 𝑋𝑖′𝑠 to 0, when an item arrives, increase 

each 𝑋𝑖 by 1 independently with probability 
1

2𝑋𝑖 

• Output Z =  
1

𝑡
( 2𝑋𝑖

 − 1)𝑡
𝑖=1     

• 𝔼,2𝑋𝑖- = n + 1, 𝑉𝑎𝑟 2𝑋𝑖 = 𝑂 𝑛2   

• 𝑉𝑎𝑟 𝑍 = 𝑉𝑎𝑟 
1

𝑡
 2𝑋𝑗𝑡

𝑗=1 − 1 = 𝑂
𝑛2

𝑡
  

• Claim: If 𝑡 ≥
𝑐

𝜖2 then Pr 𝑍 − 𝑛 > 𝜖𝑛 < 1/3 



Morris’s Algorithm: Beta-version  

Maintains 𝑡 counters 𝑋1, … , 𝑋𝑡 using log log 𝑛 
bits for each 

• Output Z =  
1

𝑡
( 2𝑋𝑖

 − 1)𝑡
𝑖=1     

• 𝑉𝑎𝑟 𝑍 = 𝑉𝑎𝑟 
1

𝑡
 2𝑋𝑗𝑡

𝑗=1 − 1 = 𝑂
𝑛2

𝑡
  

• Claim: If 𝑡 ≥
𝑐

𝜖2 then Pr 𝑍 − 𝑛 > 𝜖𝑛 < 1/3 

– Pr 𝑍 − 𝑛 > 𝜖 𝑛 <
𝑉𝑎𝑟,𝑍-

𝜖2𝑛2 = 𝑂
𝑛2

𝑡
⋅

1

𝜖2𝑛2 

– If 𝑡 ≥
𝑐

𝜖2 we can make this at most 
1

3
 



Morris’s Algorithm: Final 

• What if I want the probability of error to be 
really small, i.e. Pr 𝑍 − 𝑛 > 𝜖 𝑛 ≤ 𝛿? 

• Same Chebyshev-based analysis: 𝑡 = 𝑂
1

𝜖2𝛿
 

• Do these steps 𝑚 = 𝑂 log
1

𝛿
 times 

independently in parallel and output the 
median answer. 

• Total space: 𝑂
log log 𝑛⋅log

1

𝛿

𝜖2  

  

 



Morris’s Algorithm: Final 

• Do these steps 𝑚 = 𝑂 log
1

𝛿
 times independently in 

parallel and output the median answer  

𝑍𝑚𝑒𝑑 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑍1, … , 𝑍𝑚)  

 

• Each 𝑍𝑖  computed as before: 

 

Maintain 𝑡 counters 𝑋1, … , 𝑋𝑡 using log log 𝑛 bits for each 

• Initialize 𝑋𝑖′𝑠 to 0, when an item arrives, increase each 

𝑋𝑖  by 1 independently with probability 
1

2𝑋𝑖 

• Output Z =  
1

𝑡
( 2𝑋𝑖

 − 1)𝑡
𝑖=1     

 



Morris’s Algorithm: Final Analysis 

Claim: Pr 𝑍𝑚𝑒𝑑  − 𝑛 > 𝜖 𝑛 ≤ 𝛿 

• Let 𝑌𝑖 be an indicator r.v. for the event that 
𝑍𝑖  − 𝑛 ≤ 𝜖𝑛, where 𝑍𝑖  is the i-th trial. 

• Let 𝑌=  𝑌𝑖𝑖 .  

• Pr 𝑍𝑚𝑒𝑑 − 𝑛 > 𝜖𝑛 ≤ Pr 𝑌 ≤
𝑚

2
≤

Pr 𝑌 − 𝔼 𝑌 ≥
𝑚

6
≤ Pr 𝑌 − 𝔼 𝑌 ≥

𝜇

4
≤

exp −𝑐
1

42

2𝑚

3
< exp −𝑐′ log

1

𝛿
< 𝛿 

 



Data Streams 

• Stream: 𝒎 elements from universe 𝒏 =
*1, 2, … , 𝒏+, e.g. 

 
𝑥1, 𝑥2, … , 𝑥𝒎 = 〈5, 8, 1, 1, 1, 4, 3, 5, … , 10〉 

• Example: 

 



Approximate Median 

• 𝑆 = *𝑥1, … , 𝑥𝑚+ (all distinct) and let  
𝑟𝑎𝑛𝑘 𝑦 = |𝑥 ∈ 𝑆 ∶ 𝑥 ≤ 𝑦| 

• Problem: Find 𝜖-approximate median, i.e. 𝑦 such 
that 

𝑚

2
− 𝜖𝑚 < 𝑟𝑎𝑛𝑘 𝑦 <

𝑚

2
+ 𝜖𝑚 

• Exercise: Can we approximate the value of the 
median with additive error ±𝜖𝑛 in sublinear time? 

• Algorithm: Return the median of a sample of size 𝑡 
taken from 𝑆 (with replacement). 

 



Approximate Median 

• Problem: Find 𝜖-approximate median, i.e. 𝑦 
such that 

𝑚

2
− 𝜖𝑚 < 𝑟𝑎𝑛𝑘 𝑦 <

𝑚

2
+ 𝜖𝑚 

• Algorithm: Return the median of a sample of 
size 𝑡 taken from 𝑆 (with replacement). 

• Claim: If 𝑡 =
7

𝜖2 log
2

𝛿
 then this algorithm gives 𝜖-

median with probability 1 − 𝛿 



Approximate Median 
• Partition 𝑆 into 3 groups 

𝑺𝑳 = 𝑥 ∈ 𝑆: 𝑟𝑎𝑛𝑘 𝑥 ≤
𝑚

2
− 𝜖𝑚  

𝑺𝑴 = 𝑥 ∈ 𝑆:
𝑚

2
− 𝜖𝑚 ≤ 𝑟𝑎𝑛𝑘 𝑥 ≤

𝑚

2
+ 𝜖𝑚  

𝑺𝑼 = 𝑥 ∈ 𝑆: 𝑟𝑎𝑛𝑘 𝑥 ≥
𝑚

2
+ 𝜖𝑚  

• Key fact: If less than 
𝑡

2
 elements from each of 𝑺𝑳 and 𝑺𝑼 are 

in sample then its median is in 𝑺𝑴 
• Let 𝑿𝑖 = 1 if 𝑖-th sample is in 𝑺𝑳 and 0 otherwise. 

• Let 𝑿 =  𝑿𝒊 𝑖
. By Chernoff, if 𝑡 >

7

𝜖2 log
2

𝛿
 

Pr 𝑿 ≥
𝑡

2
≤ Pr 𝑿 ≥ 1 + 𝜖 𝔼 𝑿 ≤ 𝑒− 

𝜖2 1
2−𝜖 𝑡

3 ≤
𝛿

2
 

• Same for 𝑺𝑼 + union bound ⇒ error probability ≤ 𝛿 



Data Streams 

• Stream: 𝒎 elements from universe 𝒏 =
*1, 2, … , 𝒏+, e.g. 

 
𝑥1, 𝑥2, … , 𝑥𝒎 = 〈5, 8, 1, 1, 1, 4, 3, 5, … , 10〉 

 

• 𝑓𝑖  = frequency of 𝑖 in the stream = # of 
occurrences of value 𝑖 

𝑓 = 〈𝑓1, … , 𝑓𝒏〉 



AMS Sampling 

• Problem: Estimate  𝑔(𝑓𝑖)𝑖∈,𝑛- , for an arbitrary 
function 𝑔 with 𝑔 0 = 0. 

• Estimator: Sample 𝑥𝑱, where 𝑱 is sampled uniformly at 
random from ,𝑚- and compute: 

𝑟 = 𝑗 ≥ 𝑱 ∶ 𝑥𝑗 = 𝑥𝑱  

Output: 𝑿 = 𝑚(𝑔 𝑟 − 𝑔(𝑟 − 1))  
• Expectation: 

𝔼 𝑿 =  Pr 𝑥𝑱 = 𝑖 𝔼,𝑿|𝑥𝑱 = 𝑖-

𝑖

 

=  
𝑓𝑖

𝑚
 

𝑚 𝑔 𝑟 − 𝑔 𝑟 − 1

𝑓𝑖

𝑓𝑖

𝑟=1𝑖

=  𝑔 𝑓𝑖

𝑖

 

 



Frequency Moments 

• Define 𝐹𝑘 =  𝑓𝑖
𝑘

𝑖  for 𝑘 ∈ *0,1,2, … + 

– 𝐹0 =  # number of distinct elements 

– 𝐹1 =  # elements 

– 𝐹2 = “Gini index”, “surprise index” 



Frequency Moments 

• Define 𝐹𝑘 =  𝑓𝑖
𝑘

𝑖  for 𝑘 ∈ *0,1,2, … + 

• Use AMS estimator with 𝑿 = 𝑚 𝑟𝑘 − 𝑟 − 1 𝑘  

𝔼 𝑿 = 𝐹𝑘 

• Exercise: 0 ≤ 𝑿 ≤ 𝑚 𝑘 𝑓∗
𝑘−1, where 𝑓∗ = max

𝑖
𝑓𝑖 

• Repeat 𝑡 times and take average 𝑿 . By Chernoff: 

Pr 𝑿 − 𝐹𝑘 ≥ 𝜖𝐹𝑘 ≤ 2 exp −
𝑡𝐹𝑘𝜖2

3𝑚 𝑘 𝑓∗
𝑘−1

 

• Taking 𝑡 =
3𝑚𝑘𝑓∗

𝑘−1 log
1

𝛿

𝜖2𝐹𝑘
 gives Pr 𝑿 − 𝐹𝑘 ≥ 𝜖𝐹𝑘 ≤ 𝛿  



Frequency Moments 

• Lemma: 
𝑚𝑓∗

𝑘−1

𝐹𝑘
≤ 𝑛1−1/𝑘 

• Result: 

𝑡 =
3𝑚𝑘𝑓∗

𝑘−1 log
1

𝛿

𝜖2𝐹𝑘
= 𝑂

𝑘𝑛
1−

1
𝑘 log

1

𝛿

𝜖2 (log 𝑛 + log 𝑚)  

memory suffices for 𝜖, 𝛿 -approximation of 𝐹𝑘 
• Question: What if we don’t know 𝑚? 
• Then we can use probabilistic guessing (similar to 

Morris’s algorithm), replacing log 𝑛 with log 𝑛𝑚. 



Frequency Moments 

• Lemma: 
𝑚𝑓∗

𝑘−1

𝐹𝑘
≤ 𝑛1−1/𝑘 

• Exercise: 𝐹𝑘 ≥ 𝑛 
𝑚

𝑛

𝑘
(Hint: worst-case when 𝑓1 = ⋯ =

𝑓𝑛 =
𝑚

𝑛
. Use convexity of 𝑔 𝑥 = 𝑥𝑘). 

• Case 1: 𝑓∗
𝑘 ≤ 𝑛

𝑚

𝑛

𝑘
 

𝑚𝑓∗
𝑘−1

𝐹𝑘
≤

𝑚𝑛1−
1
𝑘

𝑚
𝑛

𝑘−1

𝑛 
𝑚
𝑛

𝑘
= 𝑛1−

1
𝑘 

   



Frequency Moments 

• Lemma: 

𝑚𝑓∗
𝑘−1

𝐹𝑘
≤ 𝑛1−1/𝑘 

• Case 2: 𝑓∗
𝑘 ≥ 𝑛

𝑚

𝑛

𝑘
 

𝑚𝑓∗
𝑘−1

𝐹𝑘
≤

𝑚𝑓∗
𝑘−1

𝑓∗
𝑘

≤
𝑚

𝑓∗
≤

𝑚

𝑛
1
𝑘  

𝑚
𝑛

= 𝑛1−
1
𝑘 

   



Hash Functions 

• Definition: A family 𝐻 of functions from 𝐴 → 𝐵 is 𝑘-wise 
independent if for any distinct 𝑥1, … , 𝑥𝑘 ∈ 𝐴 and 𝑖1, … 𝑖𝑘 ∈
𝐵: 

Pr
ℎ∈𝑅𝐻

𝑕 𝑥1 = 𝑖1, 𝑕 𝑥2 = 𝑖2, … , 𝑕 𝑥𝑘 = 𝑖𝑘 =
1

𝐵 𝑘
 

 

• Example: If 𝐴 ⊆ 0, … , 𝑝 − 1 , 𝐵 = 0, … , 𝑝 − 1  for prime 𝑝 

𝐻 = 𝑕 𝑥 =  𝑎𝑖𝑥
𝑖

𝑘−1

𝑖=0

 𝑚𝑜𝑑 𝑝: 0 ≤ 𝑎0, 𝑎1, … , 𝑎𝑘−1 ≤ 𝑝 − 1  

is a 𝑘-wise independent family of hash functions. 



Linear Sketches 

• Sketching algorithm: picks a random matrix 
𝑍 ∈ 𝑅𝑘×𝑛, where 𝑘 ≪ 𝑛 and computes 𝑍𝑓. 

• Can be incrementally updated: 

– We have a sketch 𝑍𝑓 

– When 𝑖 arrives, new frequencies are 𝑓′ = 𝑓 + 𝑒𝑖 

– Updating the sketch: 

𝑍𝑓′ = 𝑍 𝑓 + 𝑒𝑖 = 𝑍𝑓 + 𝑍𝑒𝑖 = 𝑍𝑓 +(i-th column of 𝑍) 

• Need to choose random matrices carefully 

 



𝐹2 

• Problem: 𝜖, 𝛿 -approximation for 𝐹2 =  𝑓𝑖
2

𝑖  

• Algorithm: 
– Let 𝑍 ∈ −1,1 𝑘×𝑛, where entries of each row are 4-

wise independent and rows are independent 

– Don’t store the matrix: 𝑘 4-wise independent hash 
functions 𝜎   

– Compute 𝑍𝑓, average squared entries “appropriately” 

• Analysis:  
– Let 𝑠 be any entry of 𝑍𝑓. 

– Lemma: 𝔼 𝑠2 = 𝐹2  

– Lemma: Var 𝑠2 ≤ 2𝐹2
2  



𝐹2: Expectaton 

• Let 𝜎 be a row of 𝑍 with entries 𝜎𝑖 ∈𝑅 −1,1 . 

𝔼 𝑠2 = 𝔼  𝜎𝑖𝑓𝑖

𝑛

𝑖=1

2

 

=  𝔼  𝜎𝑖
2𝑓𝑖

2

𝑛

𝑖=1

+  𝔼,𝜎𝑖𝜎𝑗𝑓𝑖𝑓𝑗-

𝑖≠𝑗

 

= 𝔼  𝑓𝑖
2

𝑛

𝑖=1

+  𝔼,𝜎𝑖𝜎𝑗-𝑓𝑖𝑓𝑗
𝑖≠𝑗

 

= 𝐹2 +  𝔼 𝜎𝑖 𝔼 𝜎𝑗  𝑓𝑖𝑖≠𝑗  𝑓𝑗 = 𝐹2  

• We used 2-wise independence for 𝔼 𝜎𝑖𝜎𝑗 = 𝔼 𝜎𝑖 𝔼 𝜎𝑗 . 
 



𝐹2: Variance 

𝔼 (𝑋2−𝔼𝑋2 2- = 𝔼  𝜎𝑖𝜎𝑗𝑓𝑖𝑓𝑗
𝑖≠𝑗

2

 

= 𝔼  2  𝜎𝑖
2𝜎𝑗

2𝑓𝑖
2𝑓𝑗

2

𝑖≠𝑗

+ 4  𝜎𝑖
2𝜎𝑗𝜎𝑘

𝑖≠𝑗≠𝑘

𝑓𝑖
2𝑓𝑗𝑓𝑘

+ 24  𝜎𝑖𝜎𝑗𝜎𝑘𝜎𝑙𝑓𝑖𝑓𝑗𝑓𝑘𝑓𝑙

𝑖<𝑗<𝑘<𝑙

  

= 2  𝑓𝑖
2𝑓𝑗

2

𝑖≠𝑗

+ 4  𝔼 σ𝑗𝜎𝑘 𝑓𝑖
2𝑓𝑗𝑓𝑘

𝑖≠𝑗≠𝑘

+ 24  𝔼,𝜎𝑖𝜎𝑗𝜎𝑘𝜎𝑙-𝑓𝑖𝑓𝑗𝑓𝑘𝑓𝑙

𝑖<𝑗<𝑘<𝑙

≤ 2 𝐹2
2 

• 𝔼 𝜎𝑖𝜎𝑗𝜎𝑘𝜎𝑙 = 𝔼 𝜎𝑖-𝔼 𝜎𝑗 𝔼,𝜎𝑘-𝔼,𝜎𝑙 = 0 by 4-wise independence  
 



𝐹0: Distinct Elements  

• Problem: (𝜖, 𝛿)-approximation for 𝐹0 =  𝑓𝑖
0

𝑖  

• Simplified: For fixed 𝑇 > 0, with prob. 1 − 𝛿 
distinguish: 

𝐹0 > 1 + 𝜖 𝑇 vs. 𝐹0 < 1 − 𝜖 𝑇 

• Original problem reduces by trying 𝑂
log 𝑛

𝜖
 

values of T: 
𝑇 = 1, 1 + 𝜖 , 1 + 𝜖 2, … , 𝑛 



𝐹0: Distinct Elements  

• Simplified: For fixed 𝑇 > 0, with prob. 1 − 𝛿 
distinguish: 

𝐹0 > 1 + 𝜖 𝑇 vs. 𝐹0 < 1 − 𝜖 𝑇 

• Algorithm:  
– Choose random sets 𝑆1, … , 𝑆𝑘 ⊆ ,𝑛- where 

Pr 𝑖 ∈ 𝑆𝑗 =
1

𝑇
 

– Compute 𝑠𝑗 =  𝑓𝑖𝑖∈𝑆𝑗
 

– If at least 𝑘/𝑒 of the values 𝑠𝑗  are zero, output 
𝐹0 < 1 − 𝜖 𝑇 



𝐹0 > 1 + 𝜖 𝑇 vs. 𝐹0 < 1 − 𝜖 𝑇 

• Algorithm:  
– Choose random sets 𝑆1, … , 𝑆𝑘 ⊆ ,𝑛- where Pr 𝑖 ∈ 𝑆𝑗 =

1

𝑇
 

– Compute 𝑠𝑗 =  𝑓𝑖𝑖∈𝑆𝑗
 

– If at least 𝑘/𝑒 of the values 𝑠𝑗 are zero, output 
𝐹0 < 1 − 𝜖 𝑇 

• Analysis:  

– If 𝐹0 > 1 + 𝜖 𝑇, then Pr 𝑠𝑗 = 0 <
1

𝑒
 −

𝜖

3
 

– If 𝐹0 < 1 − 𝜖 𝑇, then Pr 𝑠𝑗 = 0 >
1

𝑒
 + 

𝜖

3
 

– Chernoff: 𝑘 = 𝑂
1

𝜖2 log
1

𝛿
 gives correctness w.p. 1 − 𝛿 

 



𝐹0 > 1 + 𝜖 𝑇 vs. 𝐹0 < 1 − 𝜖 𝑇 

• Analysis:  

– If 𝐹0 > 1 + 𝜖 𝑇, then Pr 𝑠𝑗 = 0 <
1

𝑒
 −

𝜖

3
 

– If 𝐹0 < 1 − 𝜖 𝑇, then Pr 𝑠𝑗 = 0 >
1

𝑒
 +  

𝜖

3
 

• If 𝑇 is large and 𝜖 is small then: 

Pr 𝑠𝑗 = 0 = 1 −
1

𝑇

𝐹0
≈ 𝑒−

𝐹0
𝑇   

• If 𝐹0 > 1 + 𝜖 𝑇: 

𝑒−
𝐹0
𝑇 ≤ 𝑒− 1+𝜖 ≤

1

𝑒
−

𝜖

3
  

• If 𝐹0 < 1 − 𝜖 𝑇: 

𝑒−
𝐹0
𝑇 ≥ 𝑒− 1 −𝜖 ≥

1

𝑒
+

𝜖

3
 

 



Count-Min Sketch 

• https://sites.google.com/site/countminsketch/ 
• Stream: 𝒎 elements from universe 𝒏 =

*1, 2, … , 𝒏+, e.g. 
𝑥1, 𝑥2, … , 𝑥𝒎 = 〈5, 8, 1, 1, 1, 4, 3, 5, … , 10〉 

• 𝑓𝑖  = frequency of 𝑖 in the stream = # of 
occurrences of value 𝑖, 𝑓 = 〈𝑓1, … , 𝑓𝒏〉 

• Problems: 
– Point Query: For 𝑖 ∈ 𝑛  estimate 𝑓𝑖 

– Range Query: For 𝑖, 𝑗 ∈ ,𝑛- estimate 𝑓𝑖 + ⋯ + 𝑓𝑗 
– Quantile Query: For 𝜙 ∈ ,0,1- find 𝑗 with 𝑓1 + ⋯ +

𝑓𝑗 ≈ 𝜙𝑚 
– Heavy Hitters: For 𝜙 ∈ ,0,1- find all 𝑖 with 𝑓𝑖 ≥ 𝜙𝑚 

 

https://sites.google.com/site/countminsketch/
https://sites.google.com/site/countminsketch/


Count-Min Sketch: Construction 

• Let 𝐻1, … , 𝐻𝑑: 𝑛 → ,𝑤- be 2-wise 
independent hash functions 

• We maintain 𝑑 ⋅ 𝑤 counters with values: 

𝑐𝑖,𝑗 = # elements 𝑒 in the stream with 𝐻𝑖 𝑒 = 𝑗 

• For every 𝑥 the value 𝑐𝑖,𝐻𝑖(𝑥) ≥ 𝑓𝑥 and so: 

𝑓𝑥 ≤ 𝑓𝑥 = min (𝑐1,𝐻1 𝑥 , … , 𝑐𝑑,𝐻1 𝑑 ) 

• If 𝑤 =
2

𝜖
  and 𝑑 = log2

1

𝛿
   then: 

Pr 𝑓𝑥 ≤ 𝑓𝑥 ≤ 𝑓𝑥 + 𝜖𝑚 ≥ 1 − 𝛿. 



Count-Min Sketch: Analysis 

• Define random variables 𝒁1 … , 𝒁𝑘 such that 𝑐𝑖,𝐻𝑖(𝑥) = 𝑓𝑥 + 𝒁𝑖 

𝒁𝑖 =  𝑓𝑦
𝑦≠𝑥,𝐻𝑖 𝑦 =𝐻𝑖(𝑥)

 

• Define 𝑿𝑖,𝑦 = 1 if 𝐻𝑖 𝑦 = 𝐻𝑖(𝑥) and 0 otherwise: 

𝒁𝑖 =  𝑓𝑦𝑿𝑖,𝑦

𝑦≠𝑥

 

• By 2-wise independence: 

𝔼 𝒁𝑖 =  𝑓𝑦𝑦≠𝑥  𝔼 𝑿𝑖,𝑦 =  𝑓𝑦𝑦≠𝑥 Pr 𝐻𝑖 𝑦 = 𝐻𝑖 𝑥 ≤
𝑚

𝑤
 

• By Markov inequality, 

Pr 𝒁𝑖 ≥ 𝜖𝑚 ≤
1

𝑤 𝜖
=

1

2
 

 



Count-Min Sketch: Analysis 

• All 𝑍𝑖 are independent  

Pr 𝑍𝑖 ≥ 𝜖𝑚   𝑓𝑜𝑟 𝑎𝑙𝑙    1 ≤ 𝑖 ≤ 𝑑 ≤
1

2

𝑑

= 𝛿 

• With prob. 1 − 𝛿 there exists 𝑗 such that 𝑍𝑗 ≤ 𝜖𝑚 

𝑓𝑥 = min 𝑐1,𝐻1 𝑥 , … , 𝑐𝑑,𝐻𝑑 𝑥 = 

= min 𝑓𝑥 , +𝑍1  … , 𝑓𝑥 + 𝑍𝑑 ≤ 𝑓𝑥 + 𝜖𝑚 

• CountMin estimates values 𝑓𝑥 up to ±𝜖𝑚 with total 

memory 𝑂
log 𝑚 log

1

𝛿

𝜖2 ` 



Dyadic Intervals 

• Define log 𝑛 partitions of 𝑛 : 
𝐼0 = 1,2,3, … 𝑛  

𝐼1 = 1,2 , 3,4 , … , 𝑛 − 1, 𝑛  

𝐼2 = * 1,2,3,4 , 5,6,7,8 , … , *𝑛 − 3, 𝑛 − 2, 𝑛 − 1, 𝑛++ 

… 
Ilog n = **1, 2,3, … , 𝑛++  

 

• Exercise:  Any interval (𝑖, 𝑗) can be written as a disjoint 
union of at most 2 log 𝑛 such intervals. 

• Example: For 𝑛 = 256: 48,107 = 48,48 ∪ 49,64 ∪
65,96 ∪ 97,104 ∪ 105,106 ∪ 107,107   

 



Count-Min: Range Queries and Quantiles 

• Range Query: For 𝑖, 𝑗 ∈ ,𝑛- estimate 𝑓𝑖 + ⋯ 𝑓𝑗  

• Approximate median: Find 𝑗 such that: 

𝑓1 + ⋯ + 𝑓𝑗 ≥
𝑚

2
+ 𝜖𝑚 and 

𝑓1 + ⋯ + 𝑓𝑗−1 ≤
𝑚

2
− 𝜖𝑚  

 

 



Count-Min: Range Queries and Quantiles 

• Algorithm: Construct log 𝑛 Count-Min sketches, 
one for each 𝐼𝑖  such that for any 𝐼 ∈ 𝐼𝑖 we have 

an estimate 𝑓 𝑙  for 𝑓𝑙  such that: 

Pr 𝑓𝑙 ≤ 𝑓𝑙
 ≤ 𝑓𝑙 + 𝜖𝑚 ≥ 1 − 𝛿 

• To estimate 𝑖, 𝑗 , let 𝐼1 … , 𝐼𝑘 be decomposition: 

𝑓,𝑖,𝑗-
 = 𝑓𝑙1

 + ⋯ + 𝑓𝑙𝑘
  

• Hence,  

Pr 𝑓 𝑖,𝑗 ≤ 𝑓 𝑖,𝑗
 ≤ 2 𝜖𝑚 log 𝑛 ≥ 1 − 2𝛿 log 𝑛 

 

 



Count-Min: Heavy Hitters 

• Heavy Hitters: For 𝜙 ∈ ,0,1- find all 𝑖 with 𝑓𝑖 ≥ 𝜙𝑚 
but no elements with 𝑓𝑖 ≤ (𝜙 − 𝜖)𝑚 

• Algorithm: 
– Consider binary tree whose leaves are [n] and 

associate internal nodes with intervals 
corresponding to descendant leaves 

– Compute Count-Min sketches for each 𝐼𝑖  

– Level-by-level from root, mark children 𝐼 of 
marked nodes if 𝑓𝑙

 ≥ 𝜙𝑚  

– Return all marked leaves 

• Finds heavy-hitters in 𝑂(𝜙−1 log 𝑛) steps 
 


