CIS 700:
“algorithms for Big Data”

Lecture 2: Streaming

Slides at http://erigory.us/big-data-class.html

Grigory Yaroslavtsev
http://grigory.us 7N

http://grigory.us/
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html

Recap

* (Markov) For every ¢ > 0 (and non-negative X):

Pr[X = c E[X]]| < %

e (Chebyshev) For every ¢ > O:
] Var|X]
~ (¢ E[X])?

* (Chernoff) Let X; ... X; be independent and
identically distributed rvs W|th range [0, c] and

expectation u. Then if X = —Z X;and1>6 >0,

tpud?
Pri|X —u|l = du] < 2exp 3

Pr[|X — E[X]| = c E[X

This week

Approximate counting (Morris’s alg.) continued
Approximate Median

Alon-Mathias-Szegedy Sampling

Frequency Moments

Distinct Elements

Count-Min

Morris’s Algorithm

* (Very hard, “Count the number of items”)

— What is the total number of items up to error
+ en?

— You have O(loglogn /€?) space and can be
completely wrong with some small probability

Morris’s Algorithm: Alpha-version

Maintains a counter X using loglogn bits
* |nitialize X to O
* When an item arrives, increase X by 1 with

probability ziX

» When the stream is over, output 2% — 1

Claim: E[2¥]=n+1

Morris’s Algorithm: Alpha-version

Maintains a counter X using loglogn bits

* Initialize X to O, when an item arrives, increase X
by 1 with probability —

Claim: E[2%] =n+1

* Letthe value after seeing n items be X,

E[2%n] = Zpr JE[2%7| X,y =]

= 2% o Pr[X,_ = '](g 2J+1 4 (1 _2_1]) 2,-)
= X520 PrXn_q =j1(2/ + 1) =1+ E[2%n1]

Morris’s Algorithm: Alpha-version

Maintains a counter X using loglogn bits
* Initialize X t(1) 0, when an item arrives, increase X by 1 with
probabilityZ—X

Claim: E[2%%] = %nz + %n +1

E[27%] =) Pr{2¥n-1 = j E[22%0 2% =]
j=0

= ZfoPriztt =1 (5 477 + (1 —35)7%)

= z Pr[2%n-1 = j](j2 + 3j) = E[2%%n-1] + 3E[2%n-1]
=0

-1

> +3(n-1)/2 +1+3n

Morris’s Algorithm: Alpha-version

Maintains a counter X using loglogn bits

* Initialize X to O, when an item arrives,
increase X by 1 with probability ziX

* E[2*]=n+ 1, Var[2%] = 0(n?)

* Is this good?

Morris’s Algorithm: Beta-version

Maintains t counters X1, ..., X¢ using loglog n bits
for each

./
* |nitialize X' s to 0, when an item arrives, increase
/ . . |
each X' by 1 independently with probability e

. Output Z = %(Zlein —1)

e E[2%i] =n+ 1, Var[2¥i] = 0(n?)
: 2

e Var[Z] = Var (% € 2% 1) ~0 ("7)

. C
e Claim:Ift > E—Zthen Pr||Z —n| >en] <1/3

Morris’s Algorithm: Beta-version

Maintains t counters X1, ..., Xt using loglogn
bits for each

+ Output Z = — (¥, 2% —1)
2
. Var[Z] = Var (1 t_ 2% — 1) —0 ("—)

. C
e Claim:Ift > E—zthen Pr]|Z —n| >en] <1/3

2
—Pr||Z —n|>en| < varlz] _ O(n—)- -

€2n? t e2n?

—Ift > 6—2 we can make this at most —

Morris’s Algorithm: Final

What if | want the probability of error to be
really small, i.e. Pr[|Z — n| > en] < §7?

Same Chebyshev-based analysis: t = O (L)

€26
Do these stepsm = O (log %) times

independently in parallel and output the
median answer.

loglog n-log%
)

Total space: O (

Morris’s Algorithm: Final

* Dothesestepsm = 0 (log %) times independently in

parallel and output the median answer

Zmed = median(Z4, ..., Z,)

* Each Z; computed as before:

Maintain t counters X1, ..., Xt using log log n bits for each

e |nitialize Xi,S to 0, when an item arrives, increase each
: : . .1
X' by 1 independently with probability X

+ OutputZ = %(Zlezx" —1)

Morris’s Algorithm: Final Analysis

Claim: PrHZmed — n‘ > € n] <0

* LetY; be anindicator r.v. for the event that
Z; —n| < en, where Z; is the i-th trial.

e LletY= Zi Yl

. Pr[|Zmed—n >en]SPr _y<ﬁ <

Pr|ly — E[Y]| = 2| < Pr[_Y—IEZ[Y]I >t <

exp(C412 Z;n) < exp (—c’ log%) <0

Data Streams

e Stream: m elements from universe [n]
{1,2,..,n}, e.g.

(x1,%9, ..., %) =(5,8,1,1,1,4,3,5, ..., 10)
 Example:

Approximate Median

S ={xq, ..., x,} (all distinct) and let
rank(y) =|x €S:x <y|

Problem: Find e-approximate median, i.e. y such

that

m m
o T Em < rank(y) < - tem

Exercise: Can we approximate the value of the
median with additive error +en in sublinear time?

Algorithm: Return the median of a sample of size t
taken from S (with replacement).

Approximate Median

* Problem: Find e-approximate median, i.e. y

such that
m m
o —€m < rank(y) < - tem

* Algorithm: Return the median of a sample of
size t taken from S (with replacement).

* Claim:Ift = —log then this algorithm gives e-

€2

median with probablllty 1—-96

Approximate Median
Partition S into 3 groups

S = {x € S:rank(x) S%— em}

S {xESm—em<rank(x)<E+em}
M= 2 2

m
Sy = {x € S:rank(x) = > + em}

Key fact: If less than % elements from each of §; and S are
in sample then its medianisin Sy,
Let X; = 1 if i-th sampleisin S; and O otherwise.

Let X =).; X,. By Chernoff, if t > — log(zS

Pr [X > E] <PrlX=(1+6EX]|<e” ™ 3 <

Same for Sy + union bound = error probability < 6

Data Streams

e Stream: m elements from universe [n]
{1,2,..,n}, e.g.

(x1,%9, ..., %) =(5,8,1,1,1,4,3,5, ..., 10)

* f; =frequency of i in the stream = # of
occurrences of value i

;=< fn)

AMS Sampling

* Problem: Estimate);cr,1 9(f7), for an arbitrary
function g with g(0) = %)

* Estimator: Sample x;, where J is sampled uniformly at
random from |[m] and compute:

r=zJ:x=x]
Output: X = m(g(r) —g(r — 1))

* Expectation:
= 2 Pr[x] = i] E[X[x; = i]

Zfl zm(g("‘) g(r_l)) =Zg(fi)

Frequency Moments

* Define Fj, = Zifl-k fork € {0,1,2, ...}
— Fy = # number of distinct elements
— F; = # elements
— F, = “Gini index”, “surprise index”

Frequency Moments

Define F}, = Zifik fork € {0,1,2, ...}

Use AMS estimator with X = m(rk — (r — 1)")
E[X] = F;

Exercise: 0 < X < mk f* 1, where f, = max f;
l

Repeat t times and take average X. By Chernoff:
—~ tFkEz
PI'HX — Fk‘ = EFk] <2 exp

Taking t =

3mkfk-1 log%

EZFk

gives

3mk fk-1

Pr[|X — Fy| = eF| < 6

Freguency Moments

Lemma:

Result:

3mk k1 logs kn % log
¢ = 2085 _ 0<n Og5(10gn+logn’z))

memory sui’gflces for (€, 6)-approximation of Fj,
Question: What if we don’t know m?

Then we can use probabilistic guessing (similar to
Morris’s algorithm), replacing log n with log nm.

Frequency Moments

 Llemma:

k-1
mﬁk < nl—l/k
Fy
k

* Exercise: F, =z n (%) (Hint: worst-case when f; = -+- =
fo = % Use convexity of g(x) = x%).

K
e Casel:ffF<n (E)

n
1 k-1
-1 m
k—1 (M
mf, <mn (n) -1
oy
n

Frequency Moments

* Lemma:
k—1
mj. < nl—l/k
Fy
k %
* Case 2: f, >n(n)
fk 1 fk—l m m
F, — fF SFS Zm

Hash Functions

* Definition: A family H of functions from A — B is k-wise

independent if for any distinct x4, ..., x;, € Aand iy, ...[; €
B:

| | 1
P [AGen) = i1, h(xz) = iz, B0 = i = o

* Example:IfA<{0,..,p—1},B =1{0,..,p — 1} for primep

(k—1)
H=<h(x) = z a;x* modp:0<ayaq,.., 01 <p—1;
\ i=0 y

is a k-wise independent family of hash functions.

Linear Sketches

e Sketching algorithm: picks a random matrix
Z € R®¥™ where k < n and computes Zf.
* Can be incrementally updated:
— We have a sketch Zf

— When i arrives, new frequencies are f' = f + ¢;
— Updating the sketch:

Zf'=Z(f +e)=Zf +Ze; = Zf +(i-th column of Z)
* Need to choose random matrices carefully

F

> Problem: (¢, §)-approximation for F, = Y. f;
* Algorithm:

— Let Z € {—1,1}**" where entries of each row are 4-
wise independent and rows are independent

— Don’t store the matrix: k 4-wise independent hash
functions o

— Compute Zf, average squared entries “appropriately”
* Analysis:

— Let s be any entry of Zf.

— Lemma: E[s?] = F,

— Lemma: Var[s?] < 2Ff

I»: Expectaton

* Let o be arow of Z with entries g; €5 {—1,1}.

2]

E[s?] = E (i alfl>
(Za fl ZIE lo;oifif;])

l?/-']

(Zfl +ZIE lo;07] flf]>

l?‘—']

= F, + X« Elo; |E|g;| fi fj = F>
* We used 2-wise independence for IE[O'iO'j] = [E[O'i][E[O'j].

I»: Variance

2
E[(X?~EX?)?] = E (Z al-ajfl-fj>

I#]

=E (2 Z al-zajzfizsz + 4 z of ook [fifx

I#] I#j+k

+24) aia,-akalﬁ-ﬁfkﬁ>

i<j<k<l
=2) P +4) Eloolfififi
=] EFES 4
+24) Elogoolfififefi <2 F
i<j<k<l
. [E[aiajakal] = IE[ai]IE[aj]IE[ak]IE[al] = 0 by 4-wise independence

F,: Distinct Elements

» Problem: (¢, 8)-approximation for Fy = Y, £
* Simplified: For fixed T > 0, with prob.1 — 0
distinguish:
Fo>0+6e)Tvs.Fy < (1 —€)T

* Original problem reduces by trying O (log n)

(S
values of T:

T=1,(14+¢€),(1+¢€)?..,n

F,: Distinct Elements

* Simplified: For fixed T > 0, with prob.1 — ¢
distinguish:

FO > (1 + E)T VS. FO < (1 — E)T

* Algorithm:
— Choose random sets S, ..., S € [n] where
. 1
Pr[l € Sj] ==

— Compute s; = Ziesjfi

— If at least k /e of the values s; are zero, output
Fo<(—¢)T

Fo>14+€e)Tvs.Fp < (1 —€)T

* Algorithm:

— ghoose random sets Sy, ..., S, € [n] where Pr[i € Sj] =

T
— Compute s; = Ziesjfi

— If at least k /e of the values s; are zero, output

FO < (1 — E)T
e Analysis:
—If Fy > (1 + €)T, then Pr[s; = 0] < i -2
—If Fy < (1 —¢)T, then PI':S]- = O: >§ + g

— Chernoff: k = 0 (E—lzlog%) gives correctnessw.p.1 — 9

Fo>14+€e)Tvs.Fp < (1 —€)T

* Analysis:
1 €

— IfFy > (1+ €)T, then Pr[sj = O] < - T3

— IfFy < (1 — €)T, then Prfs; = 0] > = + :

e
e |f T islarge and € is small then:

Pr[sj=0]=(1 — = ~e T
i IfF0>(1+E)T
T < e~(1%6) < ¢
e 3

i IfF0<(1_E)T
i 1 €
e T >e (176 >_ ~+3

Count-Min Sketch

* https://sites.google.com/site/countminsketch/

* Stream: m elements from universe [n]| =
{1,2,..,n}, eg.
(x1,%, .., %m) =¢(5,8,1,1,1,4,3,5, ..., 10)
* f; =frequency of i in the stream = # of
occurrences of value i, f = (f1, ..., fn)
* Problems:
— Point Query: For i € |n] estimate f;
— Range Query: For i,j € [n] estimate f; + --- + f;
— Quantile Query: For ¢ € [0,1] find j with f; + -+ +
Jj = ¢m
— Heavy Hitters: For ¢ € [0,1] find all i with f; = ¢m

https://sites.google.com/site/countminsketch/
https://sites.google.com/site/countminsketch/

Count-Min Sketch: Construction

Let Hy, ..., Hy: [n] = [w] be 2-wise
independent hash functions
We maintain d - w counters with values:

c;j = # elements e in the stream with H;(e) = j

For every x the value ¢; y,(x) = f and so:

fx < f;c — min(cl,Hl(x)' ey Cd,Hl(d))
2 1

Ifw = . and d = logzg then:

Prlfy < fi<fitem|=1 -6

Count-Min Sketch: Analysis

Define random variables Z; ..., Zj such that ¢; y.(x) = fx + Z;

Z; = z fy

yix,Hi(y)=Hi(x)
Define X;,, = 1if H;(y) = H;(x) and 0 otherwise:

Z;, = Z fyXi,y

VX
By 2-wise independence:

E[Z;] = Syer fy E[Xiy] = Byur fy PrIHI () = Hi(0] < T
By Markov inequality,

1 1
PrlZ, Zem|] < — ==
we 2

Count-Min Sketch: Analysis

* All Z; are independent

d
1
Pr|Z; = em forall 1Si£d]£<§> =0

* With prob. 1 — 0 there exists j such that Z; < em
fx — min(cl,Hl(x), cer Cd,Hd(x)) —
=min(f,, +Z,f, + Z3) < f,, + em
* CountMin estimates values f,. up to em with total

logmlog% .
€2

memory O (

Dyadic Intervals

 Define logn partitions of [n]:
I, = {1,2,3,...n)

L ={{1,2}, {34}, .., {n — 1,n}}
I, ={{1,2,3,4},{5,6,7,8},..,{n—3,n —2,n — 1,n}}

logn = {{1,2,3,...,n}}

* Exercise: Any interval (i,j) can be written as a disjoint
union of at most 2 log n such intervals.

e Example: Forn = 256: [48,107] = [48,48] U [49,64] U
|165,96] U [97,104] U [105,106] U [107,107]

Count-Min: Range Queries and Quantiles

* Range Query: For i,j € [n] estimate f; + - f;
* Approximate median: Find j such that:

f1+-~+f]-2%+emand

m
fit 4 fii S —em

Count-Min: Range Queries and Quantiles

* Algorithm: Construct log n Count-Min sketches,
one for each I; such that for any I € I; we have

an estimate f; for f; such that:
Pr[fl <ﬁ<fl+em] >1—-0
 To estimate [i,j], let I; ..., I, be decomposition:

f fll ﬁ;

* Hence,
Pr[fl] 1< 2 emlogn] >1 —26logn

Count-Min: Heavy Hitters

* Heavy Hitters: For ¢ € [0,1] find all i with f; = ¢m
but no elements with f; < (¢ —e)m
* Algorithm:

— Consider binary tree whose leaves are [n] and
associate internal nodes with intervals
corresponding to descendant leaves

— Compute Count-Min sketches for each [;

— Level-by-level from root, mark children I of
marked nodes if f; = ¢m

— Return all marked leaves
* Finds heavy-hittersin 0(¢~1logn) steps

