
CIS 700:
“algorithms for Big Data”

Grigory Yaroslavtsev
http://grigory.us

Lecture 1: Intro
Slides at http://grigory.us/big-data-class.html

http://grigory.us/
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html

Disclaimers

• A lot of Math!

Disclaimers

• (Almost) no programming!

Class info

• MW 10:30 – 12:00, Towne 307

• Grading:

– 1-2 homework assignments (40%)

– Project (60%)

• Office hours by appointment

• Slides will be posted

What is this class about?

• Not about the band
(https://en.wikipedia.org/wiki/Big_Data_(band))

https://en.wikipedia.org/wiki/Big_Data_(band)

What is this class about?

• The four V’s: volume, velocity, variety, veracity

• Volume: “Big Data” = too big to fit in RAM

– Today 16GB ≈ 100$ => “big” starts at terabytes

• Velocity: real-time

– Doesn’t fit in RAM + has to be processed on the fly

• N = size of data, time and memory o(N)

• o(N): 𝑂 1 , 𝑂(logN) , 𝑂(𝐍𝜖) where 0 < 𝜖 < 1

• Cloud computing platforms (all offer free trials):

– Amazon EC2 (1 CPU/12mo)

– Microsoft Azure ($200/1mo)

– Google Compute Engine ($200/2mo)

• Distributed Google Code Jam

– First time in 2015:
https://code.google.com/codejam/distributed_index.html

– Caveats:

• Very basic aspects of distributed algorithms (few rounds)

• Small data (~1 𝐺𝐵, with hundreds MB RAM)

• Fast query access (~0.01 𝑚𝑠 per request), “data with queries”

Getting hands dirty

https://code.google.com/codejam/distributed_index.html

Outline

• Part 1: Streaming Algorithms

Highlights:
• Approximate counting
• # Distinct Elements,

Hyperloglog
• Median
• Frequency moments
• Heavy hitters
• Graph sketching

Outline

• Part 2: Algorithms for numerical linear algebra

 Highlights:
• Dimension reduction
• Nearest neighbor

search
• Linear sketching
• Linear regression
• Low rank

approximation

Outline

• Part 3: Massively Parallel Algorithms

Highlights:
• Computational Model
• Sorting (Terasort)
• Connectivity, MST
• Filtering dense graphs
• Euclidean MST

Outline

• Part 4: Sublinear Time Algorithms

Highlights:
• “Data with queries”
• Sublinear approximation
• Property Testing
• Testing images,

sortedness,
connectedness

• Testing noisy data

Today

Puzzles

You see a sequence of values 𝑎1, … , 𝑎𝑛, arriving one
by one:

• (Easy, “Find a missing player”)
– If all 𝑎𝑖

′𝑠 are different and have values between 1 and
𝑛 + 1, which value is missing?

– You have 𝑂(log 𝑛) space

• Example:
– There are 11 soccer players with numbers 1, …, 11.

– You see 10 of them one by one, which one is missing?
You can only remember a single number.

Which number was missing?

Puzzle #1

You see a sequence of values 𝑎1, … , 𝑎𝑛, arriving one
by one:

• (Easy, “Find a missing player”)
– If all 𝑎𝑖

′𝑠 are different and have values between 1 and
𝑛 + 1, which value is missing?

– You have 𝑂(log 𝑛) space

• Example:
– There are 11 soccer players with numbers 1, …, 11.

– You see 10 of them one by one, which one is missing?
You can only remember a single number.

Puzzle #2

You see a sequence of values 𝑎1, … , 𝑎𝑛, arriving
one by one:

• (Harder, “Keep a random team”)
– How can you maintain a uniformly random sample

of 𝑆 values out of those you have seen so far?

– You can store exactly 𝑆 items at any time

• Example:
– You want to have a team of 11 players randomly

chosen from the set you have seen.

– Players arrive one at a time and you have to
decide whether to keep them or not.

Puzzle #3

You see a sequence of values 𝑎1, … , 𝑎𝑛, arriving
one by one:

• (Very hard, “Count the number of players”)

– What is the total number of values up to error
± 𝜖𝑛?

– You have 𝑂(log log 𝑛 /𝜖2) space and can be
completely wrong with some small probability

Puzzles

You see a sequence of values 𝑎1, … , 𝑎𝑛, arriving one by one:
• (Easy, “Find a missing player”)

– If all 𝑎𝑖
′𝑠 are different and have values between 1 and 𝑛 + 1,

which value is missing?
– You have 𝑂(log 𝑛) space

• (Harder, “Keep a random team”)
– How can you maintain a uniformly random sample of 𝑆 values

out of those you have seen so far?
– You can store exactly 𝑆 items at any time

• (Very hard, “Count the number of players”)
– What is the total number of values up to error ±𝜖𝑛?
– You have 𝑂(log log 𝑛 /𝜖2) space and can be completely wrong

with some small probability

Part 1: Probability 101

“The bigger the data the better you should
know your Probability”

• Basic Probability:

– Probability, events, random variables

– Expectation, variance / standard deviation

– Conditional probability, independence, pairwise
independence, mutual independence

Expectation

• 𝑿 = random variable with values 𝑥1, … , 𝑥𝑛, …

• Expectation 𝔼 𝑿

𝔼 𝑿 = xi ⋅ Pr [𝑿 = 𝑥𝑖]

∞

𝑖=1

• Properties (linearity):
𝔼 𝑐𝑿 = 𝑐𝔼 𝑿

𝔼 𝑿 + 𝒀 = 𝔼 𝑿] + 𝔼[𝒀

• Useful fact: if all 𝑥𝑖 ≥ 0 and integer then

𝔼 𝑿 = Pr [𝑿 ≥ 𝑖]∞
𝑖=1

Variance

• Variance 𝑉𝑎𝑟 𝑿 = 𝔼[(X −𝔼[X])2]

𝑉𝑎𝑟 𝑿 = 𝔼[(X −𝔼[X])2] =
= 𝔼 𝑿2 − 2 𝐗 ⋅ 𝔼[X] + 𝔼[X]2
= 𝔼[𝑿2] − 2𝔼[𝐗 ⋅ 𝔼[X]] + 𝔼[𝔼[X]2]

• 𝔼[X] is some fixed value (a constant)

• 2 𝔼[𝐗 ⋅ 𝔼[X]]= 2 𝔼[X] ⋅ 𝔼[X] =2 𝔼2[𝑿]

• 𝔼[𝔼[X]2] = 𝔼2[X]

• 𝑉𝑎𝑟 𝑿 = 𝔼[𝑿2] − 2 𝔼2 𝑿 + 𝔼2[X] = 𝔼[𝑿𝟐] − 𝔼𝟐[X]

• Corollary: 𝑉𝑎𝑟[𝑐𝑿] = 𝑐2𝑉𝑎𝑟[𝑿]

Independence

• Two random variables 𝑿 and 𝒀 are independent if
and only if (iff) for every 𝑥, 𝑦:
Pr 𝑿 = 𝑥, 𝒀 = 𝑦 = Pr 𝑿 = 𝑥 ⋅ Pr [𝒀 = 𝑦]

• Variables 𝑿1, … , 𝑿𝑛 are mutually independent iff

Pr 𝑿𝟏 = 𝑥1, … , 𝑿𝑛 = 𝑥𝑛 = Pr 𝑿𝒊 = 𝑥𝑖

𝑛

𝑖=1

• Variables 𝑿1, … , 𝑿𝑛 are pairwise independent iff for
all pairs i,j

Pr 𝑿𝒊 = 𝑥𝑖 , 𝑿𝑗 = 𝑥𝑗 = Pr 𝑿𝒊 = 𝑥𝑖 Pr 𝑿𝒋 = 𝑥𝑗

Conditional Probabilities

• For two events 𝐸1 and 𝐸2:

Pr 𝐸2 𝐸1 =
Pr [𝐸1 𝑎𝑛𝑑 𝐸2]

Pr [𝐸1]

• If two random variables (r.vs) are independent
Pr 𝑋2 = 𝑥2|𝑋1 = 𝑥1

=
Pr [𝑋1=𝑥1 𝑎𝑛𝑑 𝑋2=𝑥2]

Pr 𝑋1=𝑥1
 (by definition)

=
Pr 𝑋1=𝑥1 𝑃𝑟 𝑋2=𝑥2

Pr[𝑋1=𝑥1]
 (by independence)

= Pr [𝑋2 = 𝑥2]

Union Bound

For any events 𝐸1, … , 𝐸𝑘:
Pr 𝐸1𝑜𝑟 𝐸2 𝑜𝑟 …𝑜𝑟 𝐸𝑘

≤ Pr 𝐸1 + Pr 𝐸2 +…+ Pr [𝐸𝑘]

• Pro: Works even for dependent variables!

• Con: Sometimes very loose, especially for mutually
independent events

Pr 𝐸1 𝑜𝑟 𝐸2 𝑜𝑟 …𝑜𝑟 𝐸𝑘 = 1 − (1 − Pr 𝐸𝑖)
𝑘
𝑖=1

Independence and Linearity of
Expectation/Variance

• Linearity of expectation (even for dependent
variables!):

𝔼 𝑋𝑖

𝑘

𝑖=1

= 𝔼[𝑋𝑖]

𝑘

𝑖=1

• Linearity of variance (only for pairwise independent
variables!)

𝑉𝑎𝑟 𝑋𝑖

𝑘

𝑖=1

= 𝑉𝑎𝑟[𝑋𝑖]

𝑘

𝑖=1

Part 2: Inequalities

• Markov inequality

• Chebyshev inequality

• Chernoff bound

Markov’s Inequality

• For every 𝑐 > 0: Pr 𝑿 ≥ 𝑐 𝔼 𝑿 ≤
1

𝑐

• Proof (by contradiction) Pr 𝑿 ≥ 𝑐 𝔼 𝑿 >
1

𝑐

𝔼 𝑿 = 𝑖 ⋅ Pr [𝑿 = 𝑖]𝑖 (by definition)

≥ 𝑖 ⋅ Pr 𝑿 = 𝑖∞
𝑖=𝑐𝔼 𝑿 (pick only some i’s)

≥ 𝑐𝔼 𝑿 ⋅ Pr 𝑿 = 𝑖 ∞
𝑖=𝑐𝔼 𝑿 (𝑖 ≥ 𝑐𝔼 𝑿)

= 𝑐𝔼 𝑿 Pr 𝑿 = 𝑖 ∞
𝑖=𝑐𝔼 𝑿 (by linearity)

= 𝑐𝔼 𝑿 Pr 𝑿 ≥ 𝑐 𝔼 𝑿 (same as above)

> 𝔼 𝑿 (by assumption Pr 𝑿 ≥ 𝑐 𝔼 𝑿 >
1

𝑐
)

Markov’s Inequality

• For every 𝑐 > 0: Pr 𝑿 ≥ 𝑐 𝔼 𝑿 ≤
1

𝑐

• Corollary (c′ = 𝑐 𝔼 𝑿) :

For every 𝑐′ > 0: Pr 𝑿 ≥ 𝑐′ ≤
𝔼 𝑿

𝑐′

• Pro: always works!

• Cons:

– Not very precise

– Doesn’t work for the lower tail: Pr 𝑿 ≤ 𝑐 𝔼 𝑿

Chebyshev’s Inequality

• For every 𝑐 > 0:

Pr 𝑿 − 𝔼 𝑿 ≥ 𝑐 𝑉𝑎𝑟 𝑿 ≤
1

𝑐2

• Proof:

Pr 𝑿 − 𝔼 𝑿 ≥ 𝑐 𝑉𝑎𝑟 𝑿

= Pr 𝑿 − 𝔼 𝑿 2 ≥ 𝑐2𝑉𝑎𝑟 𝑿 (by squaring)
= Pr 𝑿 − 𝔼 𝑿 2 ≥ 𝑐2𝔼[𝑿 − 𝔼 𝑿 2] (def. of Var)

≤
1

𝑐2
 (by Markov’s inequality)

Chebyshev’s Inequality

• For every 𝑐 > 0:

Pr 𝑿 − 𝔼 𝑿 ≥ 𝑐 𝑉𝑎𝑟 𝑿 ≤
1

𝑐2

• Corollary (𝑐′ = 𝑐 𝑉𝑎𝑟 𝑿):

For every 𝑐′ > 0:

Pr 𝑿 − 𝔼 𝑿 ≥ 𝑐′ ≤
𝑉𝑎𝑟 𝑿

𝑐′2

Chernoff bound

• Let 𝑋1…𝑋𝑡 be independent and identically
distributed r.vs with range [0,1] and
expectation 𝜇.

• Then if 𝑋 =
1

𝑡
 𝑋𝑖𝑖 and 1 > 𝛿 > 0,

Pr 𝑋 − 𝜇 ≥ 𝛿𝜇 ≤ 2 exp −
𝜇𝑡𝛿2

3

Chernoff bound (corollary)

• Let 𝑋1…𝑋𝑡 be independent and identically
distributed r.vs with range [0, c] and
expectation 𝜇.

• Then if 𝑋 =
1

𝑡
 𝑋𝑖𝑖 and 1 > 𝛿 > 0,

Pr 𝑋 − 𝜇 ≥ 𝛿𝜇 ≤ 2 exp −
𝜇𝑡𝛿2

3𝒄

Chernoff v.s Chebyshev

Large values of t is exactly what we need!

Let 𝑋1…𝑋𝑡 be independent and identically distributed r.vs with
range [0,1] and expectation 𝜇. Let 𝑿 =

1

𝑡
 𝑋𝑖 .𝑖

• Chebyshev: Pr 𝑿 − 𝜇 ≥ 𝑧 = 𝑂
1

𝑡

• Chernoff: Pr 𝑿 − 𝜇 ≥ 𝑧 = 𝑒−Ω(𝑡)

So is Chernoff always better for us?
• Yes, if we have i.i.d. variables.
• No, if we have dependent or only pairwise independent

random varaibles.
• If the variables are not identical – Chernoff-type bounds exist.

Answers to the puzzles
You see a sequence of values 𝑎1, … , 𝑎𝑛, arriving one by one:

• (Easy)
– If all 𝑎𝑖

′𝑠 are different and have values between 1 and 𝑛 + 1,
which value is missing?

– You have 𝑂(log 𝑛) space

– Answer: missing value = 𝑖𝑛𝑖=1 − 𝑎𝑖
𝑛
𝑖=1

• (Harder)
– How can you maintain a uniformly random sample of 𝑆

values out of those you have seen so far?

– You can store exactly 𝑆 values at any time

– Answer: Store first 𝑎1, … , 𝑎𝑆. When you see 𝑎𝑖 for 𝑖 > 𝑆, with
probability S/𝑖 replace random value from your storage with
𝑎𝑖.

Part 3: Morris’s Algorithm

• (Very hard, “Count the number of players”)

– What is the total number of values up to error
± 𝜖𝑛?

– You have 𝑂(log log 𝑛 /𝜖2) space and can be
completely wrong with some small probability

Morris’s Algorithm: Alpha-version

Maintains a counter 𝑋 using log log 𝑛 bits

• Initialize 𝑋 to 0

• When an item arrives, increase X by 1 with

probability
1

2𝑋

• When the stream is over, output 2𝑋 − 1

Claim: 𝔼 2𝑋 = 𝑛 + 1

Morris’s Algorithm: Alpha-version

Maintains a counter 𝑋 using log log 𝑛 bits

• Initialize 𝑋 to 0, when an item arrives, increase X

by 1 with probability
1

2𝑋

Claim: 𝔼 2𝑋 = 𝑛 + 1

• Let the value after seeing 𝑛 items be 𝑋𝑛

𝔼 2𝑋𝑛 = Pr [𝑋𝑛−1 = 𝑗]𝔼 2
𝑋𝑛|𝑋𝑛−1 = 𝑗

∞

𝑗=0

= Pr [𝑋𝑛−1 = 𝑗]
1

2𝑗
 2𝑗+1 + 1 −

1

2𝑗
2𝑗∞

𝑗=0

= Pr [𝑋𝑛−1 = 𝑗] 2
𝑗 + 1 ∞

𝑗=0 = 1 + 𝔼 2𝑋𝑛−1

Morris’s Algorithm: Alpha-version

Maintains a counter 𝑋 using log log 𝑛 bits
• Initialize 𝑋 to 0, when an item arrives, increase X by 1 with

probability
1

2𝑋

Claim: 𝔼 22𝑋 =
3

2
𝑛2 +

3

2
𝑛 + 1

𝔼 22𝑋𝑛 = Pr [2𝑋𝑛−1 = 𝑗]𝔼 22𝑋𝑛|2𝑋𝑛−1 = 𝑗

∞

𝑗=0

= Pr [2𝑋𝑛−1 = 𝑗]
1

𝑗
 4 𝑗2 + 1 −

1

𝑗
𝑗2∞

𝑗=0

= Pr [2𝑋𝑛−1 = 𝑗] 𝑗2 + 3𝑗 = 𝔼 22𝑋𝑛−1 + 3𝔼 2𝑋𝑛−1

∞

𝑗=0

= 3
n − 1 2

2
+ 3(n − 1)/2 + 1 + 3n

Morris’s Algorithm: Alpha-version

Maintains a counter 𝑋 using log log 𝑛 bits

• Initialize 𝑋 to 0, when an item arrives,

increase X by 1 with probability
1

2𝑋

• 𝔼[2𝑋] = n + 1, 𝑉𝑎𝑟 2𝑋 = 𝑂 𝑛2

• Is this good?

Morris’s Algorithm: Beta-version

Maintains 𝑡 counters 𝑋1, … , 𝑋𝑡 using log log 𝑛 bits
for each

• Initialize 𝑋𝑖
′
𝑠 to 0, when an item arrives, increase

each 𝑋𝑖 by 1 independently with probability
1

2𝑋
𝑖

• Output Z =
1

𝑡
(2𝑋

𝑖
 − 1)𝑡

𝑖=1

• 𝔼[2𝑋𝑖] = n + 1, 𝑉𝑎𝑟 2𝑋𝑖 = 𝑂 𝑛2

• 𝑉𝑎𝑟 𝑍 = 𝑉𝑎𝑟
1

𝑡
 2𝑋

𝑗𝑡
𝑗=1 − 1 = 𝑂

𝑛2

𝑡

• Claim: If 𝑡 ≥
𝑐

𝜖2
 then Pr 𝑍 − 𝑛 > 𝜖𝑛 < 1/3

Morris’s Algorithm: Beta-version

Maintains 𝑡 counters 𝑋1, … , 𝑋𝑡 using log log 𝑛
bits for each

• Output Z =
1

𝑡
(2𝑋

𝑖
 − 1)𝑡

𝑖=1

• 𝑉𝑎𝑟 𝑍 = 𝑉𝑎𝑟
1

𝑡
 2𝑋

𝑗𝑡
𝑗=1 − 1 = 𝑂

𝑛2

𝑡

• Claim: If 𝑡 ≥
𝑐

𝜖2
 then Pr 𝑍 − 𝑛 > 𝜖𝑛 < 1/3

– Pr 𝑍 − 𝑛 > 𝜖 𝑛 <
𝑉𝑎𝑟[𝑍]

𝜖2𝑛2
= 𝑂

𝑛2

𝑡
⋅
1

𝜖2𝑛2

– If 𝑡 ≥
𝑐

𝜖2
 we can make this at most

1

3

Morris’s Algorithm: Final

• What if I want the probability of error to be
really small, i.e. Pr 𝑍 − 𝑛 > 𝜖 𝑛 ≤ 𝛿?

• Same Chebyshev-based analysis: 𝑡 = 𝑂
1

𝜖2𝛿

• Do these steps 𝑚 = 𝑂 log
1

𝛿
 times

independently in parallel and output the
median answer.

• Total space: 𝑂
log log 𝑛⋅log

1

𝛿

𝜖2

Morris’s Algorithm: Final

• Do these steps 𝑚 = 𝑂 log
1

𝛿
 times

independently in parallel and output the median
answer 𝑍𝑚.

Maintains 𝑡 counters 𝑋1, … , 𝑋𝑡 using log log 𝑛 bits
for each

• Initialize 𝑋𝑖
′
𝑠 to 0, when an item arrives, increase

each 𝑋𝑖 by 1 independently with probability
1

2𝑋
𝑖

• Output Z =
1

𝑡
(2𝑋

𝑖
 − 1)𝑡

𝑖=1

Morris’s Algorithm: Final Analysis

Claim: Pr 𝑍𝑚 − 𝑛 > 𝜖 𝑛 ≤ 𝛿

• Let 𝑌𝑖 be an indicator r.v. for the event that
𝑍𝑖 − 𝑛 ≤ 𝜖𝑛, where 𝑍𝑖 is the i-th trial.

• Let 𝑌= 𝑌𝑖𝑖 .

• Pr 𝑍𝑚 − 𝑛 > 𝜖𝑛 ≤ Pr 𝑌 ≤
𝑚

2
≤

Pr 𝑌 − 𝔼 𝑌 ≥
𝑚

6
≤ Pr 𝑌 − 𝔼 𝑌 ≥

𝜇

4
≤

exp −𝑐
1

42
2𝑚

3
< exp −𝑐 log

1

𝛿
< 𝛿

Thank you!

• Questions?

• Next time:

–More streaming algorithms

