CIS 700:

"algorithms for Big Data"

Lecture 1: Intro

Slides at http://grigory.us/big-data-class.html

Grigory Yaroslavtsev
 http://grigory.us

Disclaimers

- A lot of Math!

Disclaimers

- (Almost) no programming!

Class info

- MW 10:30-12:00, Towne 307
- Grading:
- 1-2 homework assignments (40\%)
- Project (60\%)
- Office hours by appointment
- Slides will be posted

What is this class about?

- Not about the band
(https://en.wikipedia.org/wiki/Big Data (band))

What is this class about?

- The four V's: volume, velocity, variety, veracity
- Volume: "Big Data" = too big to fit in RAM - Today 16GB $\approx 100 \$$ => "big" starts at terabytes
- Velocity: fer firn

Getting hands dirty

- Cloud computing platforms (all offer free trials):
- Amazon EC2 (1 CPU/12mo)
- Microsoft Azure (\$200/1mo)
- Google Compute Engine (\$200/2mo)
- Distributed Google Code Jam
- First time in 2015:
https://code.google.com/codejam/distributed index.html
- Caveats:
- Very basic aspects of distributed algorithms (few rounds)
- Small data ($\sim 1 G B$, with hundreds MB RAM)
- Fast query access ($\sim 0.01 \mathrm{~ms}$ per request), "data with queries"

Outline

- Part 1: Streaming Algorithms

Highlights:

- Approximate counting
- \# Distinct Elements, Hyperloglog
- Median
- Frequency moments
- Heavy hitters
- Graph sketching

Outline

- Part 2: Algorithms for numerical linear algebra Highlights:
- Dimension reduction

- Nearest neighbor search
- Linear sketching
- Linear regression
- Low rank approximation

Outline

- Part 3: Massively Parallel Algorithms

Highlights:

- Computational Model
- Sorting (Terasort)
- Connectivity, MST
- Filtering dense graphs
- Euclidean MST

Outline

- Part 4: Sublinear Time Algorithms

Highlights:

- "Data with queries"
- Sublinear approximation
- Property Testing
- Testing images, sortedness, connectedness
- Testing noisy data

Today

Puzzles

You see a sequence of values a_{1}, \ldots, a_{n}, arriving one by one:

- (Easy, "Find a missing player")
- If all $a_{i}^{\prime} s$ are different and have values between 1 and $n+1$, which value is missing?
- You have $O(\log n)$ space
- Example:
- There are 11 soccer players with numbers $1, \ldots, 11$.
- You see 10 of them one by one, which one is missing? You can only remember a single number.

$$
5
$$

$$
3
$$

$$
9
$$

Which number was missing?

Puzzle \#1

You see a sequence of values a_{1}, \ldots, a_{n}, arriving one by one:

- (Easy, "Find a missing player")
- If all $a_{i}^{\prime} s$ are different and have values between 1 and $n+1$, which value is missing?
- You have $O(\log n)$ space
- Example:
- There are 11 soccer players with numbers $1, \ldots, 11$.
- You see 10 of them one by one, which one is missing? You can only remember a single number.

Puzzle \#2

You see a sequence of values a_{1}, \ldots, a_{n}, arriving one by one:

- (Harder, "Keep a random team")
- How can you maintain a uniformly random sample of S values out of those you have seen so far?
- You can store exactly S items at any time
- Example:
- You want to have a team of 11 players randomly chosen from the set you have seen.
- Players arrive one at a time and you have to decide whether to keep them or not.

Puzzle \#3

You see a sequence of values a_{1}, \ldots, a_{n}, arriving one by one:

- (Very hard, "Count the number of players")
- What is the total number of values up to error $\pm \epsilon n$?
- You have $O\left(\log \log n / \epsilon^{2}\right)$ space and can be completely wrong with some small probability

Puzzles

You see a sequence of values a_{1}, \ldots, a_{n}, arriving one by one:

- (Easy, "Find a missing player")
- If all $a_{i}^{\prime} s$ are different and have values between 1 and $n+1$, which value is missing?
- You have $O(\log n)$ space
- (Harder, "Keep a random team")
- How can you maintain a uniformly random sample of S values out of those you have seen so far?
- You can store exactly S items at any time
- (Very hard, "Count the number of players")
- What is the total number of values up to error $\pm \epsilon n$?
- You have $O\left(\log \log n / \epsilon^{2}\right)$ space and can be completely wrong with some small probability

Part 1: Probability 101

"The bigger the data the better you should know your Probability"

- Basic Probability:
- Probability, events, random variables
- Expectation, variance / standard deviation
- Conditional probability, independence, pairwise independence, mutual independence

Expectation

- $\boldsymbol{X}=$ random variable with values $x_{1}, \ldots, x_{n}, \ldots$
- Expectation $\mathbb{E}[X]$

$$
\mathbb{E}[\boldsymbol{X}]=\sum_{i=1}^{\infty} \mathrm{x}_{\mathrm{i}} \cdot \operatorname{Pr}\left[\boldsymbol{X}=x_{i}\right]
$$

- Properties (linearity):

$$
\begin{gathered}
\mathbb{E}[c \boldsymbol{X}]=c \mathbb{E}[\boldsymbol{X}] \\
\mathbb{E}[\boldsymbol{X}+\boldsymbol{Y}]=\mathbb{E}[\boldsymbol{X}]+\mathbb{E}[\boldsymbol{Y}]
\end{gathered}
$$

- Useful fact: if all $x_{i} \geq 0$ and integer then

$$
\mathbb{E}[\boldsymbol{X}]=\sum_{i=1}^{\infty} \operatorname{Pr}[\boldsymbol{X} \geq i]
$$

Variance

- Variance $\operatorname{Var}[\boldsymbol{X}]=\mathbb{E}\left[(\mathbf{X}-\mathbb{E}[\mathbf{X}])^{2}\right]$

$$
\begin{gathered}
\operatorname{Var}[\mathbf{X}]=\mathbb{E}\left[(\mathbf{X}-\mathbb{E}[\mathbf{X}])^{2}\right]= \\
=\mathbb{E}\left[\boldsymbol{X}^{2}-2 \mathbf{X} \cdot \mathbb{E}[\mathbf{X}]+\mathbb{E}[\mathbf{X}]^{2}\right] \\
=\mathbb{E}\left[\boldsymbol{X}^{2}\right]-2 \mathbb{E}[\mathbf{X} \cdot \mathbb{E}[\mathbf{X}]]+\mathbb{E}\left[\mathbb{E}[\mathbf{X}]^{2}\right]
\end{gathered}
$$

- $\mathbb{E}[X]$ is some fixed value (a constant)
- $2 \mathbb{E}[\mathbf{X} \cdot \mathbb{E}[\mathrm{X}]]=2 \mathbb{E}[\mathrm{X}] \cdot \mathbb{E}[\mathrm{X}]=2 \mathbb{E}^{2}[\boldsymbol{X}]$
- $\mathbb{E}\left[\mathbb{E}[X]^{2}\right]=\mathbb{E}^{2}[\mathrm{X}]$
- $\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-2 \mathbb{E}^{2}[X]+\mathbb{E}^{2}[\mathrm{X}]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}^{2}[\mathrm{X}]$
- Corollary: $\operatorname{Var}[c \boldsymbol{X}]=c^{2} \operatorname{Var}[X]$

Independence

- Two random variables \boldsymbol{X} and \boldsymbol{Y} are independent if and only if (iff) for every x, y :

$$
\operatorname{Pr}[\boldsymbol{X}=x, \boldsymbol{Y}=y]=\operatorname{Pr}[\boldsymbol{X}=x] \cdot \operatorname{Pr}[\boldsymbol{Y}=y]
$$

- Variables $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$ are mutually independent iff

$$
\operatorname{Pr}\left[\boldsymbol{X}_{1}=x_{1}, \ldots, \boldsymbol{X}_{n}=x_{n}\right]=\prod_{i=1}^{n} \operatorname{Pr}\left[\boldsymbol{X}_{\boldsymbol{i}}=x_{i}\right]
$$

- Variables $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$ are pairwise independent iff for all pairs i,j

$$
\operatorname{Pr}\left[\boldsymbol{X}_{\boldsymbol{i}}=x_{i}, \boldsymbol{X}_{j}=x_{j}\right]=\operatorname{Pr}\left[\boldsymbol{X}_{\boldsymbol{i}}=x_{i}\right] \operatorname{Pr}\left[\boldsymbol{X}_{\boldsymbol{j}}=x_{j}\right]
$$

Conditional Probabilities

- For two events E_{1} and E_{2} :

$$
\operatorname{Pr}\left[E_{2} \mid E_{1}\right]=\frac{\operatorname{Pr}\left[E_{1} \text { and } E_{2}\right]}{\operatorname{Pr}\left[E_{1}\right]}
$$

- If two random variables (r.vs) are independent $\operatorname{Pr}\left[X_{2}=x_{2} \mid X_{1}=x_{1}\right]$
$=\frac{\operatorname{Pr}\left[X_{1}=x_{1} \text { and } X_{2}=x_{2}\right]}{\operatorname{Pr}\left[X_{1}=x_{1}\right]}$ (by definition)
$=\frac{\operatorname{Pr}\left[X_{1}=x_{1}\right] \operatorname{Pr}\left[X_{2}=x_{2}\right]}{\operatorname{Pr}\left[X_{1}=x_{1}\right]}$ (by independence)
$=\operatorname{Pr}\left[X_{2}=x_{2}\right]$

Union Bound

For any events E_{1}, \ldots, E_{k} :

$$
\begin{gathered}
\operatorname{Pr}\left[E_{1} \text { or } E_{2} \text { or } \ldots \text { or } E_{k}\right] \\
\leq \operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]+\ldots+\operatorname{Pr}\left[E_{k}\right]
\end{gathered}
$$

- Pro: Works even for dependent variables!
- Con: Sometimes very loose, especially for mutually independent events
$\operatorname{Pr}\left[E_{1}\right.$ or E_{2} or \ldots or $\left.E_{k}\right]=1-\prod_{i=1}^{k}\left(1-\operatorname{Pr}\left[E_{i}\right]\right)$

Independence and Linearity of
 Expectation/Variance

- Linearity of expectation (even for dependent variables!):

$$
\mathbb{E}\left[\sum_{i=1}^{k} X_{i}\right]=\sum_{i=1}^{k} \mathbb{E}\left[X_{i}\right]
$$

- Linearity of variance (only for pairwise independent variables!)

$$
\operatorname{Var}\left[\sum_{i=1}^{k} X_{i}\right]=\sum_{i=1}^{k} \operatorname{Var}\left[X_{i}\right]
$$

Part 2: Inequalities

- Markov inequality
- Chebyshev inequality
- Chernoff bound

Markov's Inequality

- For every $c>0$: $\operatorname{Pr}[\boldsymbol{X} \geq c \mathbb{E}[X]] \leq \frac{1}{c}$
- Proof (by contradiction) $\operatorname{Pr}[\boldsymbol{X} \geq c \mathbb{E}[\boldsymbol{X}]]>\frac{1}{c}$
$\mathbb{E}[\boldsymbol{X}]=\sum_{i} i \cdot \operatorname{Pr}[\boldsymbol{X}=i]$
(by definition)
$\geq \sum_{i=c \mathbb{E}[X]}^{\infty} i \cdot \operatorname{Pr}[X=i] \quad$ (pick only some i's)
$\geq \sum_{i=c \mathbb{E}[\boldsymbol{X}]}^{\infty} \mathbb{E}[\boldsymbol{X}] \cdot \operatorname{Pr}[\boldsymbol{X}=i]$
$(i \geq c \mathbb{E}[X])$
$=c \mathbb{E}[\boldsymbol{X}] \sum_{i=c \mathbb{E}[\boldsymbol{X}]}^{\infty} \operatorname{Pr}[\boldsymbol{X}=i]$
(by linearity)
$=c \mathbb{E}[\boldsymbol{X}] \operatorname{Pr}[\boldsymbol{X} \geq c \mathbb{E}[\boldsymbol{X}]]$
(same as above)
$>\mathbb{E}[\boldsymbol{X}] \quad$ (by assumption $\operatorname{Pr}[\boldsymbol{X} \geq c \mathbb{E}[\boldsymbol{X}]]>\frac{1}{c}$)

Markov’s Inequality

- For every $c>0: \operatorname{Pr}[\boldsymbol{X} \geq c \mathbb{E}[\boldsymbol{X}]] \leq \frac{1}{c}$
- Corollary ($\mathrm{c}^{\prime}=c \mathbb{E}[\boldsymbol{X}]$):

For every $c^{\prime}>0: \operatorname{Pr}\left[\boldsymbol{X} \geq c^{\prime}\right] \leq \frac{\mathbb{E}[\boldsymbol{X}]}{c^{\prime}}$

- Pro: always works!
- Cons:
- Not very precise
- Doesn't work for the lower tail: $\operatorname{Pr}[\boldsymbol{X} \leq c \mathbb{E}[\boldsymbol{X}]]$

Chebyshev's Inequality

- For every $c>0$:

$$
\operatorname{Pr}[|\boldsymbol{X}-\mathbb{E}[\boldsymbol{X}]| \geq c \sqrt{\operatorname{Var}[\boldsymbol{X}]}] \leq \frac{1}{c^{2}}
$$

- Proof:

$$
\operatorname{Pr}[|\boldsymbol{X}-\mathbb{E}[\boldsymbol{X}]| \geq c \sqrt{\operatorname{Var}[\boldsymbol{X}]}]
$$

$=\operatorname{Pr}\left[|\boldsymbol{X}-\mathbb{E}[\boldsymbol{X}]|^{2} \geq c^{2} \operatorname{Var}[\boldsymbol{X}]\right]$
(by squaring)
$=\operatorname{Pr}\left[|\boldsymbol{X}-\mathbb{E}[\boldsymbol{X}]|^{2} \geq c^{2} \mathbb{E}\left[|\boldsymbol{X}-\mathbb{E}[\boldsymbol{X}]|^{2}\right]\right]$ (def. of Var)
$\leq \frac{1}{c^{2}}$
(by Markov's inequality)

Chebyshev's Inequality

- For every $c>0$:

$$
\operatorname{Pr}[|\boldsymbol{X}-\mathbb{E}[\boldsymbol{X}]| \geq c \sqrt{\operatorname{Var}[\boldsymbol{X}]}] \leq \frac{1}{c^{2}}
$$

- Corollary ($\left.c^{\prime}=c \sqrt{\operatorname{Var}[\boldsymbol{X}]}\right)$:

For every $c^{\prime}>0$:

$$
\operatorname{Pr}\left[|\boldsymbol{X}-\mathbb{E}[\boldsymbol{X}]| \geq c^{\prime}\right] \leq \frac{\operatorname{Var}[\boldsymbol{X}]}{c^{\prime 2}}
$$

Chernoff bound

- Let $X_{1} \ldots X_{t}$ be independent and identically distributed r.vs with range [0,1] and expectation μ.
- Then if $X=\frac{1}{t} \sum_{i} X_{i}$ and $1>\delta>0$,

$$
\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq 2 \exp \left(-\frac{\mu t \delta^{2}}{3}\right)
$$

Chernoff bound (corollary)

- Let $X_{1} \ldots X_{t}$ be independent and identically distributed r.vs with range $[0, \mathrm{c}]$ and expectation μ.
- Then if $X=\frac{1}{t} \sum_{i} X_{i}$ and $1>\delta>0$,

$$
\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq 2 \exp \left(-\frac{\mu t \delta^{2}}{3 c}\right)
$$

Chernoff v.s Chebyshev

Large values of t is exactly what we need!
Let $X_{1} \ldots X_{t}$ be independent and identically distributed r .vs with range $[0,1]$ and expectation μ. Let $\boldsymbol{X}=\frac{1}{t} \sum_{i} X_{i}$.

- Chebyshev: $\operatorname{Pr}[|X-\mu| \geq z]=O\left(\frac{1}{t}\right)$
- Chernoff: $\operatorname{Pr}[|\boldsymbol{X}-\mu| \geq z]=e^{-\Omega(t)}$

So is Chernoff always better for us?

- Yes, if we have i.i.d. variables.
- No, if we have dependent or only pairwise independent random varaibles.
- If the variables are not identical - Chernoff-type bounds exist.

Answers to the puzzles

You see a sequence of values a_{1}, \ldots, a_{n}, arriving one by one:

- (Easy)
- If all $a_{i}^{\prime} s$ are different and have values between 1 and $n+1$, which value is missing?
- You have $O(\log n)$ space
- Answer: missing value $=\sum_{i=1}^{n} i-\sum_{i=1}^{n} a_{i}$
- (Harder)
- How can you maintain a uniformly random sample of S values out of those you have seen so far?
- You can store exactly S values at any time
- Answer: Store first a_{1}, \ldots, a_{S}. When you see a_{i} for $i>S$, with probability S / i replace random value from your storage with a_{i}.

Part 3: Morris's Algorithm

- (Very hard, "Count the number of players")
- What is the total number of values up to error $\pm \epsilon n$?
- You have $O\left(\log \log n / \epsilon^{2}\right)$ space and can be completely wrong with some small probability

Morris's Algorithm: Alpha-version

Maintains a counter X using $\log \log n$ bits

- Initialize X to 0
- When an item arrives, increase X by 1 with probability $\frac{1}{2^{X}}$
- When the stream is over, output $2^{X}-1$

Claim: $\mathbb{E}\left[2^{X}\right]=n+1$

Morris's Algorithm: Alpha-version

Maintains a counter X using $\log \log n$ bits

- Initialize X to 0 , when an item arrives, increase X by 1 with probability $\frac{1}{2^{X}}$
Claim: $\mathbb{E}\left[2^{X}\right]=n+1$
- Let the value after seeing n items be X_{n}
$\mathbb{E}\left[2^{X_{n}}\right]=\sum_{j=0}^{\infty} \operatorname{Pr}\left[X_{n-1}=j\right] \mathbb{E}\left[2^{X_{n}} \mid X_{n-1}=j\right]$
$=\sum_{j=0}^{\infty} \operatorname{Pr}\left[X_{n-1}=j\right]\left(\frac{1}{2^{j}} 2^{j+1}+\left(1-\frac{1}{2^{j}}\right) 2^{j}\right)$
$=\sum_{j=0}^{\infty} \operatorname{Pr}\left[X_{n-1}=j\right]\left(2^{j}+1\right)=1+\mathbb{E}\left[2^{X_{n-1}}\right]$

Morris's Algorithm: Alpha-version

Maintains a counter X using $\log \log n$ bits

- Initialize X to 0 , when an item arrives, increase X by 1 with probability $\frac{1}{2^{X}}$
Claim: $\mathbb{E}\left[2_{\infty}^{2 X}\right]=\frac{3}{2} n^{2}+\frac{3}{2} n+1$
$\mathbb{E}\left[2^{2 X_{n}}\right]=\sum_{j=0}^{\infty} \operatorname{Pr}\left[2^{X_{n-1}}=j\right] \mathbb{E}\left[2^{2 X_{n}} \mid 2^{X_{n-1}}=j\right]$
$=\sum_{j=0}^{\infty} \operatorname{Pr}\left[2^{X_{n-1}}=j\right]\left(\frac{1}{j} 4 j^{2}+\left(1-\frac{1}{j}\right) j^{2}\right)$
$=\sum_{j=0}^{\infty} \operatorname{Pr}\left[2^{X_{n-1}}=j\right]\left(j^{2}+3 j\right)=\mathbb{E}\left[2^{2 X_{n-1}}\right]+3 \mathbb{E}\left[2^{X_{n-1}}\right]$
$=3 \frac{(n-1)^{2}}{2}+3(n-1) / 2+1+3 n$

Morris's Algorithm: Alpha-version

Maintains a counter X using $\log \log n$ bits

- Initialize X to 0 , when an item arrives,
increase X by 1 with probability $\frac{1}{2^{X}}$
- $\mathbb{E}\left[2^{X}\right]=n+1, \operatorname{Var}\left[2^{X}\right]=O\left(n^{2}\right)$
- Is this good?

Morris's Algorithm: Beta-version

Maintains t counters X^{1}, \ldots, X^{t} using $\log \log n$ bits for each

- Initialize $X^{i^{\prime}} s$ to 0 , when an item arrives, increase each X^{i} by 1 independently with probability $\frac{1}{2^{X^{i}}}$
- Output $Z=\frac{1}{t}\left(\sum_{i=1}^{t} 2^{X^{i}}-1\right)$
- $\mathbb{E}\left[2^{X_{i}}\right]=\mathrm{n}+1, \operatorname{Var}\left[2^{X_{i}}\right]=O\left(n^{2}\right)$
- $\operatorname{Var}[Z]=\operatorname{Var}\left(\frac{1}{t} \sum_{j=1}^{t} 2^{X^{j}}-1\right)=O\left(\frac{n^{2}}{t}\right)$
- Claim: If $t \geq \frac{c}{\epsilon^{2}}$ then $\operatorname{Pr}[|Z-n|>\epsilon n]<1 / 3$

Morris's Algorithm: Beta-version

Maintains t counters X^{1}, \ldots, X^{t} using $\log \log n$ bits for each

- Output Z $=\frac{1}{t}\left(\sum_{i=1}^{t} 2^{X^{i}}-1\right)$
- $\operatorname{Var}[Z]=\operatorname{Var}\left(\frac{1}{t} \sum_{j=1}^{t} 2^{X^{j}}-1\right)=O\left(\frac{n^{2}}{t}\right)$
- Claim: If $t \geq \frac{c}{\epsilon^{2}}$ then $\operatorname{Pr}[|Z-n|>\epsilon n]<1 / 3$
$-\operatorname{Pr}[|Z-n|>\epsilon n]<\frac{\operatorname{Var}[Z]}{\epsilon^{2} n^{2}}=O\left(\frac{n^{2}}{t}\right) \cdot \frac{1}{\epsilon^{2} n^{2}}$
- If $t \geq \frac{c}{\epsilon^{2}}$ we can make this at most $\frac{1}{3}$

Morris's Algorithm: Final

- What if I want the probability of error to be really small, i.e. $\operatorname{Pr}[|Z-n|>\epsilon n] \leq \delta$?
- Same Chebyshev-based analysis: $t=O\left(\frac{1}{\epsilon^{2} \delta}\right)$
- Do these steps $m=O\left(\log \frac{1}{\delta}\right)$ times independently in parallel and output the median answer.
- Total space: $O\left(\frac{\log \log n \cdot \log \frac{1}{\bar{\delta}}}{\epsilon^{2}}\right)$

Morris's Algorithm: Final

- Do these steps $m=O\left(\log \frac{1}{\delta}\right)$ times independently in parallel and output the median answer Z^{m}.

Maintains t counters X^{1}, \ldots, X^{t} using $\log \log n$ bits for each

- Initialize $X^{i^{\prime}}{ }_{S}$ to 0 , when an item arrives, increase each X^{i} by 1 independently with probability $\frac{1}{2^{X^{i}}}$
- Output $\mathrm{Z}=\frac{1}{t}\left(\sum_{i=1}^{t} 2^{X^{i}}-1\right)$

Morris's Algorithm: Final Analysis

Claim: $\operatorname{Pr}\left[\left|Z^{m}-n\right|>\epsilon n\right] \leq \delta$

- Let Y_{i} be an indicator r.v. for the event that $\left|Z_{i}-n\right| \leq \epsilon n$, where Z_{i} is the i -th trial.
- Let $Y=\sum_{i} Y_{i}$.
- $\operatorname{Pr}\left[\left|Z^{m}-n\right|>\epsilon n\right] \leq \operatorname{Pr}\left[Y \leq \frac{m}{2}\right] \leq$
$\operatorname{Pr}\left[|Y-\mathbb{E}[Y]| \geq \frac{m}{6}\right] \leq \operatorname{Pr}\left[|Y-\mathbb{E}[Y]| \geq \frac{\mu}{4}\right] \leq$
$\exp \left(-c \frac{1}{4^{2}} \frac{2 m}{3}\right)<\exp \left(-c \log \frac{1}{\delta}\right)<\delta$

Thank you!

- Questions?
- Next time:
- More streaming algorithms

