CIS 700:
“algorithms for Big Data”

Lecture 1: Intro

Slides at http://erigory.us/big-data-class.html

Grigory Yaroslavtsev
http://grigory.us 7N

http://grigory.us/
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html

Disclaimers

 Alot of Math!

FIELDS arrAnGED BY PORITY
FORE PURE ~

SOCIOLOGY 1S PSYCHOLOGY IS BIOLeGY 1S WHICH 1S JusT
JUST APPUED JUsT APPLIED JUST APPLIED APPLIED PHYSICS,
PSYC‘-I-IGHTJG? Hiﬂmﬁv EHEH15TFE‘:" IT's NICE TO

GE ON TOF.

BE SN

OH, HEY, T DIDNT
SEE YOU GUYS ALL
THE WAY OVER THERE.

L

SDCIELGGIEI"S PEYCHOLOGISTS EJCI.DGIETS chsm PHvSI::Jsrs

MATHEMATICIANS

Disclaimers

(Almost) no programming!

THUS, FOR ANY NONDETERMINISTIC TURING
MACHINE M THAT RUNS IN SOME POLYNOMIAL
TIME p¢n), WE CAN DEVISE AN ALGORITHM

THAT TAKES AN INPUT w OF LENGTH n AND
PRODUCES Eu,.. THE RUNNING TIME IS O¢pm)

ON A MULTITAPE DETERMINISTIC TURING
MACHINE AND .,

& e | /1 Y CH?

ein LA

WTF, MAN. I JUST
WANTED TO LEARN
How TO PROGRAM
VIDEO GAMES,

y”.h’ /J'

nf/@m_}/x(_

Class info

MW 10:30 — 12:00, Towne 307
Grading:

— 1-2 homework assignments (40%)
— Project (60%)

Office hours by appointment
Slides will be posted

What is this class about?

* Not about the band
(https://en.wikipedia.org/wiki/Big Data (band))

by BIG DATA

https://en.wikipedia.org/wiki/Big_Data_(band)

What is this class about?

The four V’s: volume, velocity, variety, veracity
Volume: “Big Data” = too big to fit in RAM

— Today 1GGB = 100$ => ”blg” starts at terabytes
Velocity: f @t A

— DoesiLlE

Getting hands dirty

* Cloud computing platforms (all offer free trials):

— Amazon EC2 (1 CPU/12mo)
| amazon [EC2
— Microsoft Azure (S200/1mo) Eg

— Google Compute Engine (5200/2mo) WG

* Distributed Google Code Jam

— First time in 2015:
https://code.google.com/codejam/distributed index.html

— Caveats:

* Very basic aspects of distributed algorithms (few rounds)
 Small data (~1 GB, with hundreds MB RAM)
* Fast query access (~0.01 ms per request), “data with queries”

https://code.google.com/codejam/distributed_index.html

Outline

* Part 1: Streaming Algorithms

Highlights:

* Approximate counting

 # Distinct Elements,
Hyperloglog

* Maedian

* Frequency moments

* Heavy hitters

* Graph sketching

Outline

* Part 2: Algorithms for numerical linear algebra

Highlights:

* Dimension reduction

* Nearest neighbor
search

* Linear sketching

* Linear regression

* Low rank
approximation

Outline

* Part 3: Massively Parallel Algorithms

Highlights:

e Computational Model
e Sorting (Terasort)

* Connectivity, MST

* Filtering dense graphs
 Euclidean MST

Outline

Part 4: Sublinear Time Algorithms

Highlights:

e “Data with queries”

* Sublinear approximation

* Property Testing

* Testing images,
sortedness,
connectedness

* Testing noisy data

Today

Puzzles

You see a sequence of values a4, ..., a,, arriving one
by one:
* (Easy, “Find a missing player”)

— If all a;s are different and have values between 1 and
n + 1, which value is missing?

— You have O(logn) space
 Example:

— There are 11 soccer players with numbers 1, ..., 11.

— You see 10 of them one by one, which one is missing?
You can only remember a single number.

ing?

Which number was miss

Puzzle #1

You see a sequence of values a4, ..., a,, arriving one
by one:
* (Easy, “Find a missing player”)

— If all a;s are different and have values between 1 and
n + 1, which value is missing?

— You have O(logn) space
 Example:

— There are 11 soccer players with numbers 1, ..., 11.

— You see 10 of them one by one, which one is missing?
You can only remember a single number.

Puzzle #2

You see a sequence of values aq, ..., a,, arriving
one by one:

* (Harder, “Keep a random team”)

— How can you maintain a uniformly random sample
of S values out of those you have seen so far?

— You can store exactly S items at any time

 Example:

— You want to have a team of 11 players randomly
chosen from the set you have seen.

— Players arrive one at a time and you have to
decide whether to keep them or not.

Puzzle #3

You see a sequence of values ay, ..., a,, arriving
one by one:

* (Very hard, “Count the number of players”)

— What is the total number of values up to error
+ en?

— You have O(loglogn /€?) space and can be
completely wrong with some small probability

Puzzles

You see a sequence of values a4, ..., a,, arriving one by one:
e (Easy, “Find a missing player”)

— If all a;s are different and have values between 1 and n + 1,
which value is missing?

— You have O(logn) space

* (Harder, “Keep a random team”)

— How can you maintain a uniformly random sample of S values
out of those you have seen so far?

— You can store exactly S items at any time
* (Very hard, “Count the number of players”)
— What is the total number of values up to error +en?

— You have O(loglogn /€?) space and can be completely wrong
with some small probability

Part 1: Probability 101

“The bigger the data the better you should
know your Probability”

e Basic Probability:

— Probability, events, random variables
— Expectation, variance / standard deviation

— Conditional probability, independence, pairwise
independence, mutual independence

Expectation

X =random variable with values x4, ..., x,,, ...

Expectation E|X]
E[X] = Z X; * Pr[X = x;]

Properties (linearity):
E|cX] = cE[X]
E|X + Y] = E[X] + E[Y]
Useful fact: if all x; = 0 and integer then
E[X] = %22, Pr[X > i]

Variance
e Variance Var[X] = E[(X —E[X]*]

Var[X] = E[(X —E[X])?] =
= E[X? —2X - E[X] + E[X]?]
= E[X?] — 2E[X - E[X]] + E[E[X]?]

* [E[X] is some fixed value (a constant)

« 2E[X-E[X]]=2E[X] - E[X] =2 E?[X]

- E[E[X]?] = E*[X]

» Var[X] = E[X?] — 2 E?|X] + E?[X] = E[X?]
* Corollary: Var[cX] = c*Var[X]

— E*[X]

Independence

* Two random variables X and Y are independent if
and only if (iff) for every x, y:

PrIX =x,Y =y]| =Pr|X =x] : Pr[Y = y]
* Variables X4, ..., X,, are mutually independent iff

n
PriXq{ = x4, ..., X, = x| = 1_[Pr|X; = x{]
i=1

* Variables X4, ..., X, are pairwise independent iff for
all pairs i,j

Pr|X; = x;, X; = x;| = Pr[X; = x;] Pr[X; = x;]

Conditional Probabilities

* Fortwo events E; and E5:

Pr|E; and E,]
Pr(E |
* |f two random variables (r.vs) are independent
Pr[X; = x;]|X; = x4]
__ Pr[X;=x1 and X,=x;] C
= S (by definition)
_ Pr[X;=x1]Pr[X,=x,] :
= — (by independence)

= Pr[Xz = XZ]

Pr|E,|E{] =

Union Bound

For any events Ey, ..., E:

Pr|E or E, or ...or Ej]
< PI‘[El] + Pr[Ez] + ...+ Pr[Ek]

* Pro: Works even for dependent variables!

* Con: Sometimes very loose, especially for mutually
independent events

PrlE;or E, or ..or E;] =1 — H{‘zl(l — Pr|E;])

Independence and Linearity of
Expectation/Variance

* Linearity of expectation (even for dependent

variables!):
[k] k
i=1 i=1

* Linearity of variance (oniy for pairwise independent
variables!)

k] k
Var ZXi = 2 Var|X;]
=1 | =1

l

Part 2: Inequalities

* Markov inequality
* Chebyshev inequality
* Chernoff bound

Markov’s Inequality

» Foreveryc > 0: Pr[X > cE[X]]| < -

C

* Proof (by contradiction) Pr[X > C IE[X:] > %

E[X] =);i Pr[X =] (by definition)
> Yiocpx i PrlX =] (pick only some i’s)
> Yizcrix) CE[X] - Pr[X = i] (i = cE[X])
= cE[X] X2 cgpx) PriX = i] (by linearity)
= cE[X] Pr|X = ¢ E[X]] (same as above)

> E[X] (by assumption Pr[X >C IE[X]] > %)

Markov’s Inequality

* Foreveryc > 0: Pr[X > C IE[X]] < %

* Corollary (¢’ = c E[X]):

E[X]

Foreveryc' > 0: PrIX>¢'] < ~

* Pro: always works!
* Cons:

— Not very precise
— Doesn’t work for the lower tail: Pr[X <c IE[X]]

Chebyshev’s Inequality

* Foreveryc > O:

Pr [IX —E[X]| = ¢ JVar[X]] <

2
* Proof:

Pr [|X —E[X]| > ¢ JVar[Xj]

= Pr[|X — E[X]|* = c*Var[X]] (by squaring)

= Pr[|X — E[X]|? > CZIE[lX_ — E[X]|%]] (def. of Var)
<= (by Markov’s inequality)

c?2

Chebyshev’s Inequality

* Foreveryc > 0O:

Pr[IX — E[X]| = C\/Var[X]] Sclz

* Corollary (¢’ = \/Var[X]):
For every ¢’ > 0:
Var|X]

Pr|lX —E[X]| = 1 < —

Chernoff bound

* Let X ... X; be independent and identically
distributed r.vs with range [0,1] and
expectation L.

* Thenif X = %ZiXi and1 >4 >0,

uts?
Pri|X —ul = du] < 2exp 3

Chernoff bound (corollary)

* Let X ... X; be independent and identically
distributed r.vs with range [0, c] and
expectation L.

* Thenif X = %ZiXi and1 >4 >0,

uts?
Pri|X —ul = du] < 2exp 3

Chernoff v.s Chebyshev

Large values of t is exactly what we need!

Let X; ... X; be independent and |dent|cally distributed r.vs with
range [0,1] and expectation u. Let X = —Z X;.

* Chebyshev: Pr[|X —u| = z] = 0(1)
» Chernoff: Pr|X —pu| = z] = e %®

So is Chernoff always better for us?
* Yes, if we have i.i.d. variables.

* No, if we have dependent or only pairwise independent
random varaibles.

* |f the variables are not identical — Chernoff-type bounds exist.

Answers to the puzzles

You see a sequence of values a4, ..., a,, arriving one by one:

* (Easy)

— If all a;s are different and have values between 1 and n + 1,
which value is missing?

— You have O(logn) space
— Answer: missing value =" ;i — X1, a;
* (Harder)

— How can you maintain a uniformly random sample of S
values out of those you have seen so far?

— You can store exactly S values at any time

— Answer: Store first a4, ..., as. When you see a; fori > §, with
probability S/i replace random value from your storage with
a;.

Part 3: Morris’s Algorithm

* (Very hard, “Count the number of players”)

— What is the total number of values up to error
+ en?

— You have O(loglogn /€?) space and can be
completely wrong with some small probability

Morris’s Algorithm: Alpha-version

Maintains a counter X using loglogn bits
* |nitialize X to O
* When an item arrives, increase X by 1 with

probability ziX

» When the stream is over, output 2% — 1

Claim: E[2¥]=n+1

Morris’s Algorithm: Alpha-version

Maintains a counter X using loglogn bits

* Initialize X to O, when an item arrives, increase X
by 1 with probability —

Claim: E[2%] =n+1

* Letthe value after seeing n items be X,

E[2%n] = Zpr JE[2%7| X,y =]

= 2% o Pr[X,_ = '](g 2J+1 4 (1 _2_1]) 2,-)
= X520 PrXn_q =j1(2/ + 1) =1+ E[2%n1]

Morris’s Algorithm: Alpha-version

Maintains a counter X using loglogn bits
* Initialize X t(1) 0, when an item arrives, increase X by 1 with
probabilityZ—X

Claim: E[2%%] = %nz + %n +1

E[27%] =) Pr{2¥n-1 = j E[22%0 2% =]
j=0

=3z oprizie =1 (2472 + (1 -2)2)

= z Pr[2*n-1 = j](j* + 3j) = E[2%%n-1] 4 3E[2%n-1]

j=0

(n —1)°
3 > +3(n-1)/2 +1+3n

Morris’s Algorithm: Alpha-version

Maintains a counter X using loglogn bits

* Initialize X to O, when an item arrives,
increase X by 1 with probability ziX

* E[2*]=n+ 1, Var[2%] = 0(n?)

* Is this good?

Morris’s Algorithm: Beta-version

Maintains t counters X1, ..., X¢ using loglog n bits
for each

./
* |nitialize X' s to 0, when an item arrives, increase
/ . . |
each X' by 1 independently with probability e

. Output Z = %(Zlein —1)

e E[2%i] =n+ 1, Var[2¥i] = 0(n?)
: 2

e Var[Z] = Var (% € 2% 1) ~0 ("7)

. C
e Claim:Ift > E—Zthen Pr||Z —n| >en] <1/3

Morris’s Algorithm: Beta-version

Maintains t counters X1, ..., Xt using loglogn
bits for each

+ Output Z = — (¥, 2% —1)
2
. Var[Z] = Var (1 t_ 2% — 1) —0 ("—)

. C
e Claim:Ift > E—zthen Pr]|Z —n| >en] <1/3

2
—Pr||Z —n|>en| < varlz] _ O(n—)- -

€2n? t e2n?

—Ift > 6—2 we can make this at most —

Morris’s Algorithm: Final

What if | want the probability of error to be
really small, i.e. Pr[|Z — n| > en] < §7?

Same Chebyshev-based analysis: t = O (L)

€26
Do these stepsm = O (log %) times

independently in parallel and output the
median answer.

loglog n-log%
)

Total space: O (

Morris’s Algorithm: Final

* Do thesestepsm = 0 (log () times

mdependently in parallel and output the median
answer Z™

Maintains t counters X1, ..., X¢ using loglog n bits
for each

e |nitialize Xl s to 0, when an item arrives, mcrease
each X! by 1 independently with probablllty —

 Output Z = ;(Zizlzx‘ —1)

Morris’s Algorithm: Final Analysis

Claim: Pr[|Z™ —n|>en] <6

* LetY; be anindicator r.v. for the event that
Z; —n| < en, where Z; is the i-th trial.

° |let Y: Zi Yl

o Pr[|Z™ —n| > en] < Pr[Y S%‘ <

Pr|ly —E[Y]| = Z| < Pr|ly — E[Y]| 2 4| <

exp(€) < exp (—cﬁ.og%) <0

Thank youl!

* Questions?
* Next time:
—More streaming algorithms

