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Disclaimers 

• A lot of Math! 



Disclaimers 

• (Almost) no programming! 



Class info 

• MW 10:30 – 12:00, Towne 307 

• Grading: 

– 1-2 homework assignments (40%) 

– Project (60%) 

• Office hours by appointment 

• Slides will be posted 

 

 



What is this class about? 

• Not about the band 
(https://en.wikipedia.org/wiki/Big_Data_(band)) 

https://en.wikipedia.org/wiki/Big_Data_(band)


What is this class about? 

• The four V’s: volume, velocity, variety, veracity 

• Volume: “Big Data” = too big to fit in RAM 

– Today 16GB ≈ 100$ => “big” starts at terabytes 

• Velocity: real-time 

– Doesn’t fit in RAM + has to be processed on the fly 

• N = size of data, time and memory o(N) 

• o(N): 𝑂 1 , 𝑂(logN) , 𝑂(𝐍𝜖) where 0 < 𝜖 < 1 

 

 



• Cloud computing platforms (all offer free trials): 

– Amazon EC2 (1 CPU/12mo) 

– Microsoft Azure ($200/1mo) 

– Google Compute Engine ($200/2mo) 

• Distributed Google Code Jam 

– First time in 2015: 
https://code.google.com/codejam/distributed_index.html  

– Caveats:  

• Very basic aspects of distributed algorithms (few rounds) 

• Small data (~1 𝐺𝐵, with hundreds MB RAM) 

• Fast query access (~0.01 𝑚𝑠 per request), “data with queries”   

Getting hands dirty 

https://code.google.com/codejam/distributed_index.html


Outline 

• Part 1: Streaming Algorithms 

Highlights: 
• Approximate counting 
• # Distinct Elements, 

Hyperloglog 
• Median 
• Frequency moments 
• Heavy hitters 
• Graph sketching 



Outline  

• Part 2: Algorithms for numerical linear algebra 

 Highlights: 
• Dimension reduction 
• Nearest neighbor 

search 
• Linear sketching 
• Linear regression 
• Low rank 

approximation 



Outline 

• Part 3: Massively Parallel Algorithms 

Highlights: 
• Computational Model 
• Sorting (Terasort) 
• Connectivity, MST 
• Filtering dense graphs 
• Euclidean MST 

 



Outline 

• Part 4: Sublinear Time Algorithms 

 
Highlights: 
• “Data with queries” 
• Sublinear approximation 
• Property Testing 
• Testing images, 

sortedness, 
connectedness 

• Testing noisy data 



Today 

 



Puzzles 

You see a sequence of values 𝑎1, … , 𝑎𝑛, arriving one 
by one:  

• (Easy, “Find a missing player”)  
– If all 𝑎𝑖

′𝑠 are different and have values between 1 and 
𝑛 + 1, which value is missing?  

– You have 𝑂(log 𝑛) space 

• Example: 
– There are 11 soccer players with numbers 1, …, 11.  

– You see 10 of them one by one, which one is missing? 
You can only remember a single number.  























Which number was missing? 



Puzzle #1 

You see a sequence of values 𝑎1, … , 𝑎𝑛, arriving one 
by one:  

• (Easy, “Find a missing player”)  
– If all 𝑎𝑖

′𝑠 are different and have values between 1 and 
𝑛 + 1, which value is missing?  

– You have 𝑂(log 𝑛) space 

• Example: 
– There are 11 soccer players with numbers 1, …, 11.  

– You see 10 of them one by one, which one is missing? 
You can only remember a single number.  



Puzzle #2 

You see a sequence of values 𝑎1, … , 𝑎𝑛, arriving 
one by one:  

• (Harder, “Keep a random team”)   
– How can you maintain a uniformly random sample 

of 𝑆 values out of those you have seen so far?  

– You can store exactly 𝑆 items at any time 

• Example: 
– You want to have a team of 11 players randomly 

chosen from the set you have seen. 

– Players arrive one at a time and you have to 
decide whether to keep them or not. 



Puzzle #3 

You see a sequence of values 𝑎1, … , 𝑎𝑛, arriving 
one by one:  

• (Very hard, “Count the number of players”) 

– What is the total number of values up to error 
± 𝜖𝑛?  

– You have 𝑂(log log 𝑛 /𝜖2) space and can be 
completely wrong with some small probability  



Puzzles 

You see a sequence of values 𝑎1, … , 𝑎𝑛, arriving one by one:  
• (Easy, “Find a missing player”)  

– If all 𝑎𝑖
′𝑠 are different and have values between 1 and 𝑛 + 1, 

which value is missing?  
– You have 𝑂(log 𝑛) space 

• (Harder, “Keep a random team”)   
– How can you maintain a uniformly random sample of 𝑆 values 

out of those you have seen so far?  
– You can store exactly 𝑆 items at any time 

• (Very hard, “Count the number of players”) 
– What is the total number of values up to error ±𝜖𝑛?  
– You have 𝑂(log log 𝑛 /𝜖2) space and can be completely wrong 

with some small probability  



Part 1: Probability 101 

“The bigger the data the better you should 
know your Probability” 

• Basic Probability: 

– Probability, events, random variables 

– Expectation, variance / standard deviation  

– Conditional probability, independence, pairwise 
independence, mutual independence 

 



Expectation 

• 𝑿 = random variable with values 𝑥1, … , 𝑥𝑛, … 

• Expectation 𝔼 𝑿  

𝔼 𝑿 = xi ⋅ Pr [𝑿 = 𝑥𝑖]

∞

𝑖=1

 

• Properties (linearity):  
𝔼 𝑐𝑿 = 𝑐𝔼 𝑿  

𝔼 𝑿 + 𝒀 = 𝔼 𝑿] + 𝔼[𝒀  

• Useful fact: if all 𝑥𝑖 ≥ 0 and integer then  

𝔼 𝑿 =  Pr [𝑿 ≥ 𝑖]∞
𝑖=1    

 



Variance 

• Variance 𝑉𝑎𝑟 𝑿 = 𝔼[(X −𝔼[X])2] 

 
𝑉𝑎𝑟 𝑿 = 𝔼[(X −𝔼[X])2] =  
= 𝔼 𝑿2  − 2 𝐗 ⋅ 𝔼[X] + 𝔼[X]2  
= 𝔼[𝑿2] − 2𝔼[𝐗 ⋅ 𝔼[X]] + 𝔼[𝔼[X]2] 

 

• 𝔼[X] is some fixed value (a constant) 

• 2 𝔼[𝐗 ⋅ 𝔼[X]]= 2 𝔼[X] ⋅ 𝔼[X] =2 𝔼2[𝑿] 

• 𝔼[𝔼[X]2] =  𝔼2[X] 

• 𝑉𝑎𝑟 𝑿 = 𝔼[𝑿2] − 2 𝔼2 𝑿 +  𝔼2[X] = 𝔼[𝑿𝟐]  −  𝔼𝟐[X] 

• Corollary: 𝑉𝑎𝑟[𝑐𝑿]  =  𝑐2𝑉𝑎𝑟[𝑿]  



Independence 

• Two random variables 𝑿 and 𝒀 are independent if 
and only if (iff) for every 𝑥, 𝑦: 
Pr 𝑿 = 𝑥, 𝒀 = 𝑦 = Pr 𝑿 = 𝑥 ⋅ Pr [𝒀 = 𝑦] 

• Variables 𝑿1, … , 𝑿𝑛 are mutually independent iff 

Pr 𝑿𝟏 = 𝑥1, … , 𝑿𝑛 = 𝑥𝑛 = Pr 𝑿𝒊 = 𝑥𝑖

𝑛

𝑖=1

 

• Variables 𝑿1, … , 𝑿𝑛 are pairwise independent iff for 
all pairs i,j 

Pr 𝑿𝒊 = 𝑥𝑖 , 𝑿𝑗 = 𝑥𝑗 = Pr 𝑿𝒊 = 𝑥𝑖 Pr 𝑿𝒋 = 𝑥𝑗  

 



Conditional Probabilities 

• For two events 𝐸1 and 𝐸2: 

Pr 𝐸2 𝐸1 =
Pr [𝐸1 𝑎𝑛𝑑 𝐸2]

Pr [𝐸1]
 

• If two random variables (r.vs) are independent 
Pr 𝑋2 = 𝑥2|𝑋1 = 𝑥1  

=
Pr [𝑋1=𝑥1 𝑎𝑛𝑑 𝑋2=𝑥2]

Pr 𝑋1=𝑥1
  (by definition) 

=
Pr 𝑋1=𝑥1 𝑃𝑟 𝑋2=𝑥2

Pr[𝑋1=𝑥1]
  (by independence) 

= Pr [𝑋2 = 𝑥2]  

  

 



Union Bound 

For any events 𝐸1, … , 𝐸𝑘: 
Pr 𝐸1𝑜𝑟 𝐸2 𝑜𝑟 …𝑜𝑟 𝐸𝑘

≤ Pr 𝐸1 + Pr 𝐸2 +…+ Pr [𝐸𝑘] 

 

• Pro: Works even for dependent variables! 

• Con: Sometimes very loose, especially for mutually 
independent events 

Pr 𝐸1 𝑜𝑟 𝐸2 𝑜𝑟 …𝑜𝑟 𝐸𝑘 = 1 −  (1 − Pr 𝐸𝑖 )
𝑘
𝑖=1  



Independence and Linearity of 
Expectation/Variance 

• Linearity of expectation (even for dependent 
variables!): 

𝔼  𝑋𝑖

𝑘

𝑖=1

= 𝔼[𝑋𝑖]

𝑘

𝑖=1

 

• Linearity of variance (only for pairwise independent 
variables!) 

𝑉𝑎𝑟  𝑋𝑖

𝑘

𝑖=1

= 𝑉𝑎𝑟[𝑋𝑖]

𝑘

𝑖=1

 

  



Part 2: Inequalities 

• Markov inequality 

• Chebyshev inequality 

• Chernoff bound 



Markov’s Inequality 

• For every 𝑐 > 0:    Pr 𝑿 ≥ 𝑐 𝔼 𝑿 ≤
1

𝑐
 

• Proof (by contradiction) Pr 𝑿 ≥ 𝑐 𝔼 𝑿 >
1

𝑐
  

𝔼 𝑿 =  𝑖 ⋅ Pr [𝑿 = 𝑖]𝑖                   (by definition) 

≥   𝑖 ⋅ Pr 𝑿 = 𝑖∞
𝑖=𝑐𝔼 𝑿           (pick only some i’s) 

≥  𝑐𝔼 𝑿 ⋅ Pr 𝑿 = 𝑖  ∞
𝑖=𝑐𝔼 𝑿              (𝑖 ≥ 𝑐𝔼 𝑿 ) 

= 𝑐𝔼 𝑿  Pr 𝑿 = 𝑖            ∞
𝑖=𝑐𝔼 𝑿  (by linearity) 

= 𝑐𝔼 𝑿 Pr 𝑿 ≥ 𝑐 𝔼 𝑿             (same as above) 

> 𝔼 𝑿          (by assumption Pr 𝑿 ≥ 𝑐 𝔼 𝑿 >
1

𝑐
) 



Markov’s Inequality 

• For every 𝑐 > 0:    Pr 𝑿 ≥ 𝑐 𝔼 𝑿 ≤
1

𝑐
 

• Corollary (c′ = 𝑐 𝔼 𝑿 ) : 

For every 𝑐′ > 0:  Pr 𝑿 ≥ 𝑐′ ≤
𝔼 𝑿

𝑐′
  

• Pro: always works! 

• Cons:  

– Not very precise 

– Doesn’t work for the lower tail: Pr 𝑿 ≤ 𝑐 𝔼 𝑿  

 



Chebyshev’s Inequality 

• For every 𝑐 > 0:  

Pr 𝑿 − 𝔼 𝑿 ≥ 𝑐 𝑉𝑎𝑟 𝑿 ≤
1

𝑐2
 

• Proof:  

Pr 𝑿 − 𝔼 𝑿 ≥ 𝑐 𝑉𝑎𝑟 𝑿   

= Pr 𝑿 − 𝔼 𝑿 2 ≥ 𝑐2𝑉𝑎𝑟 𝑿                (by squaring) 
= Pr 𝑿 − 𝔼 𝑿 2 ≥ 𝑐2𝔼[ 𝑿 − 𝔼 𝑿 2 ] (def. of Var) 

≤
1

𝑐2
                                              (by Markov’s inequality) 

 



Chebyshev’s Inequality 

• For every 𝑐 > 0:  

Pr 𝑿 − 𝔼 𝑿 ≥ 𝑐 𝑉𝑎𝑟 𝑿 ≤
1

𝑐2
 

• Corollary (𝑐′ = 𝑐 𝑉𝑎𝑟 𝑿 ): 

For every 𝑐′ > 0:  

Pr 𝑿 − 𝔼 𝑿 ≥ 𝑐′ ≤
𝑉𝑎𝑟 𝑿

𝑐′2
 

 



Chernoff bound 

• Let 𝑋1…𝑋𝑡 be independent and identically 
distributed r.vs with range [0,1] and 
expectation 𝜇.  

• Then if 𝑋 =
1

𝑡
 𝑋𝑖𝑖  and 1 > 𝛿 > 0, 

Pr 𝑋 − 𝜇 ≥ 𝛿𝜇 ≤ 2 exp −
𝜇𝑡𝛿2

3
 

 



Chernoff bound (corollary) 

• Let 𝑋1…𝑋𝑡 be independent and identically 
distributed r.vs with range [0, c] and 
expectation 𝜇.  

• Then if 𝑋 =
1

𝑡
 𝑋𝑖𝑖  and 1 > 𝛿 > 0, 

Pr 𝑋 − 𝜇 ≥ 𝛿𝜇 ≤ 2 exp −
𝜇𝑡𝛿2

3𝒄
 

 



Chernoff v.s Chebyshev 

Large values of t is exactly what we need! 
 
Let 𝑋1…𝑋𝑡 be independent and identically distributed r.vs with 
range [0,1] and expectation 𝜇. Let 𝑿 =

1

𝑡
 𝑋𝑖 .𝑖  

• Chebyshev: Pr 𝑿 − 𝜇 ≥ 𝑧 = 𝑂
1

𝑡
 

• Chernoff: Pr 𝑿 − 𝜇 ≥ 𝑧 = 𝑒−Ω(𝑡) 
 
So is Chernoff always better for us? 
• Yes, if we have i.i.d. variables. 
• No, if we have dependent or only pairwise independent 

random varaibles. 
• If the variables are not identical – Chernoff-type bounds exist. 
 



Answers to the puzzles 
You see a sequence of values 𝑎1, … , 𝑎𝑛, arriving one by one:  

• (Easy)  
– If all 𝑎𝑖

′𝑠 are different and have values between 1 and 𝑛 + 1, 
which value is missing?  

– You have 𝑂(log 𝑛) space 

– Answer: missing value =  𝑖𝑛𝑖=1  −  𝑎𝑖
𝑛
𝑖=1  

• (Harder)   
– How can you maintain a uniformly random sample of 𝑆 

values out of those you have seen so far?  

– You can store exactly 𝑆 values at any time 

– Answer: Store first 𝑎1, … , 𝑎𝑆. When you see 𝑎𝑖  for 𝑖 > 𝑆, with 
probability S/𝑖 replace random value from your storage with 
𝑎𝑖. 



Part 3: Morris’s Algorithm 

• (Very hard, “Count the number of players”) 

– What is the total number of values up to error 
± 𝜖𝑛?  

– You have 𝑂(log log 𝑛 /𝜖2) space and can be 
completely wrong with some small probability  

 



Morris’s Algorithm: Alpha-version  

Maintains a counter 𝑋 using log log 𝑛 bits 

• Initialize 𝑋 to 0 

• When an item arrives, increase X by 1 with 

probability 
1

2𝑋
  

• When the stream is over, output 2𝑋 − 1 

 

Claim: 𝔼 2𝑋 = 𝑛 + 1  



Morris’s Algorithm: Alpha-version  

Maintains a counter 𝑋 using log log 𝑛 bits 

• Initialize 𝑋 to 0, when an item arrives, increase X 

by 1 with probability 
1

2𝑋
  

Claim: 𝔼 2𝑋 = 𝑛 + 1  

• Let the value after seeing 𝑛 items be 𝑋𝑛 

𝔼 2𝑋𝑛 = Pr [𝑋𝑛−1 = 𝑗 ]𝔼 2
𝑋𝑛|𝑋𝑛−1 = 𝑗

∞

𝑗=0

 

=   Pr [𝑋𝑛−1 = 𝑗 ]
1

2𝑗
 2𝑗+1 + 1 −

1

2𝑗
2𝑗∞

𝑗=0  

=  Pr [𝑋𝑛−1 = 𝑗 ] 2
𝑗 + 1  ∞

𝑗=0 = 1 + 𝔼 2𝑋𝑛−1  

 

 

 



Morris’s Algorithm: Alpha-version  

Maintains a counter 𝑋 using log log 𝑛 bits 
• Initialize 𝑋 to 0, when an item arrives, increase X by 1 with 

probability 
1

2𝑋
  

Claim: 𝔼 22𝑋 =
3

2
𝑛2 +

3

2
𝑛 + 1  

𝔼 22𝑋𝑛 = Pr [2𝑋𝑛−1 = 𝑗 ]𝔼 22𝑋𝑛|2𝑋𝑛−1 = 𝑗

∞

𝑗=0

 

=  Pr [2𝑋𝑛−1 = 𝑗 ]
1

𝑗
 4 𝑗2 + 1 −

1

𝑗
𝑗2∞

𝑗=0  

= Pr [2𝑋𝑛−1 = 𝑗 ] 𝑗2 + 3𝑗 = 𝔼 22𝑋𝑛−1 + 3𝔼 2𝑋𝑛−1  

∞

𝑗=0

 

= 3
n − 1 2

2
+ 3(n − 1)/2  + 1 + 3n  

 
 
 
 



Morris’s Algorithm: Alpha-version  

Maintains a counter 𝑋 using log log 𝑛 bits 

• Initialize 𝑋 to 0, when an item arrives, 

increase X by 1 with probability 
1

2𝑋
  

• 𝔼[2𝑋] = n + 1, 𝑉𝑎𝑟 2𝑋 = 𝑂 𝑛2   

• Is this good? 



Morris’s Algorithm: Beta-version  

Maintains 𝑡 counters 𝑋1, … , 𝑋𝑡 using log log 𝑛 bits 
for each 

• Initialize 𝑋𝑖
′
𝑠 to 0, when an item arrives, increase 

each 𝑋𝑖 by 1 independently with probability 
1

2𝑋
𝑖 

• Output Z =  
1

𝑡
( 2𝑋

𝑖
 − 1)𝑡

𝑖=1     

• 𝔼[2𝑋𝑖] = n + 1, 𝑉𝑎𝑟 2𝑋𝑖 = 𝑂 𝑛2   

• 𝑉𝑎𝑟 𝑍 = 𝑉𝑎𝑟 
1

𝑡
 2𝑋

𝑗𝑡
𝑗=1 − 1 = 𝑂

𝑛2

𝑡
  

• Claim: If 𝑡 ≥
𝑐

𝜖2
 then Pr 𝑍 − 𝑛 > 𝜖𝑛 < 1/3 



Morris’s Algorithm: Beta-version  

Maintains 𝑡 counters 𝑋1, … , 𝑋𝑡 using log log 𝑛 
bits for each 

• Output Z =  
1

𝑡
( 2𝑋

𝑖
 − 1)𝑡

𝑖=1     

• 𝑉𝑎𝑟 𝑍 = 𝑉𝑎𝑟 
1

𝑡
 2𝑋

𝑗𝑡
𝑗=1 − 1 = 𝑂

𝑛2

𝑡
  

• Claim: If 𝑡 ≥
𝑐

𝜖2
 then Pr 𝑍 − 𝑛 > 𝜖𝑛 < 1/3 

– Pr 𝑍 − 𝑛 > 𝜖 𝑛 <
𝑉𝑎𝑟[𝑍]

𝜖2𝑛2
= 𝑂

𝑛2

𝑡
⋅
1

𝜖2𝑛2
 

– If 𝑡 ≥
𝑐

𝜖2
 we can make this at most 

1

3
 



Morris’s Algorithm: Final 

• What if I want the probability of error to be 
really small, i.e. Pr 𝑍 − 𝑛 > 𝜖 𝑛 ≤ 𝛿? 

• Same Chebyshev-based analysis: 𝑡 = 𝑂
1

𝜖2𝛿
 

• Do these steps 𝑚 = 𝑂 log
1

𝛿
 times 

independently in parallel and output the 
median answer. 

• Total space: 𝑂
log log 𝑛⋅log

1

𝛿

𝜖2
 

  

 



Morris’s Algorithm: Final 

• Do these steps 𝑚 = 𝑂 log
1

𝛿
 times 

independently in parallel and output the median 
answer 𝑍𝑚. 

 
Maintains 𝑡 counters 𝑋1, … , 𝑋𝑡 using log log 𝑛 bits 
for each 

• Initialize 𝑋𝑖
′
𝑠 to 0, when an item arrives, increase 

each 𝑋𝑖 by 1 independently with probability 
1

2𝑋
𝑖 

• Output Z =  
1

𝑡
( 2𝑋

𝑖
 − 1)𝑡

𝑖=1     

 



Morris’s Algorithm: Final Analysis 

Claim: Pr 𝑍𝑚  − 𝑛 > 𝜖 𝑛 ≤ 𝛿 

• Let 𝑌𝑖 be an indicator r.v. for the event that 
𝑍𝑖  − 𝑛 ≤ 𝜖𝑛, where 𝑍𝑖  is the i-th trial. 

• Let 𝑌= 𝑌𝑖𝑖 .  

• Pr 𝑍𝑚 − 𝑛 > 𝜖𝑛 ≤ Pr 𝑌 ≤
𝑚

2
≤

Pr 𝑌 − 𝔼 𝑌 ≥
𝑚

6
≤ Pr 𝑌 − 𝔼 𝑌 ≥

𝜇

4
≤

exp −𝑐
1

42
2𝑚

3
< exp −𝑐 log

1

𝛿
< 𝛿 

 



Thank you! 

• Questions? 

• Next time:  

–More streaming algorithms 

 


