CIS 700: “algorithms for Big Data”

Lecture 1: Intro

Slides at http://grigory.us/big-data-class.html

Grigory Yaroslavtsev

http://grigory.us
Disclaimers

• A lot of Math!
Disclaimers

• (Almost) no programming!
Class info

• MW 10:30 – 12:00, Towne 307
• Grading:
 – 1-2 homework assignments (40%)
 – Project (60%)
• Office hours by appointment
• Slides will be posted
What is this class about?

- Not about the band
 (https://en.wikipedia.org/wiki/Big_Data_(band))
What is this class about?

• The four V’s: **volume, velocity, variety, veracity**

• **Volume:** “Big Data” = too big to fit in RAM
 – Today 16GB ≈ 100$ => “big” starts at terabytes

• **Velocity:** real-time
 – Doesn’t fit in RAM + has to be processed on the fly

• **N =** size of data, time and memory o(N)

• o(N): $O(1)$, $O(\log N)$, $O(N^\epsilon)$ where $0 < \epsilon < 1$
Getting hands dirty

• Cloud computing platforms (all offer free trials):
 – Amazon EC2 (1 CPU/12mo)
 – Microsoft Azure ($200/1mo)
 – Google Compute Engine ($200/2mo)

• Distributed Google Code Jam
 – First time in 2015:
 https://code.google.com/codejam/distributed_index.html
 – Caveats:
 • Very basic aspects of distributed algorithms (few rounds)
 • Small data (~1 GB, with hundreds MB RAM)
 • Fast query access (~0.01 ms per request), “data with queries”
Outline

• Part 1: Streaming Algorithms

 Highlights:
 • Approximate counting
 • # Distinct Elements, Hyperloglog
 • Median
 • Frequency moments
 • Heavy hitters
 • Graph sketching
Outline

• Part 2: Algorithms for numerical linear algebra

Highlights:
• Dimension reduction
• Nearest neighbor search
• Linear sketching
• Linear regression
• Low rank approximation
Outline

• Part 3: Massively Parallel Algorithms

Highlights:
• Computational Model
• Sorting (Terasort)
• Connectivity, MST
• Filtering dense graphs
• Euclidean MST
Outline

• Part 4: Sublinear Time Algorithms

Highlights:
• “Data with queries”
• Sublinear approximation
• Property Testing
• Testing images, sortedness, connectedness
• Testing noisy data
Today
Puzzles

You see a sequence of values a_1, \ldots, a_n, arriving one by one:

• **(Easy, “Find a missing player”)**
 - If all a_i's are different and have values between 1 and $n + 1$, which value is missing?
 - You have $O(\log n)$ space

• Example:
 - There are 11 soccer players with numbers 1, ..., 11.
 - You see 10 of them one by one, which one is missing? You can only remember a single number.
2
Which number was missing?
Puzzle #1

You see a sequence of values a_1, \ldots, a_n, arriving one by one:

• (Easy, “Find a missing player”)
 – If all $a_i's$ are different and have values between 1 and $n + 1$, which value is missing?
 – You have $O(\log n)$ space

• Example:
 – There are 11 soccer players with numbers 1, ..., 11.
 – You see 10 of them one by one, which one is missing? You can only remember a single number.
Puzzle #2

You see a sequence of values a_1, \ldots, a_n, arriving one by one:

• (Harder, “Keep a random team”)
 – How can you maintain a uniformly random sample of S values out of those you have seen so far?
 – You can store exactly S items at any time

• Example:
 – You want to have a team of 11 players randomly chosen from the set you have seen.
 – Players arrive one at a time and you have to decide whether to keep them or not.
Puzzle #3

You see a sequence of values a_1, \ldots, a_n, arriving one by one:

• (Very hard, “Count the number of players”)
 – What is the total number of values up to error $\pm \epsilon n$?
 – You have $O(\log \log n / \epsilon^2)$ space and can be completely wrong with some small probability
Puzzles

You see a sequence of values a_1, \ldots, a_n, arriving one by one:

- **(Easy, “Find a missing player”)**
 - If all a'_i's are different and have values between 1 and $n + 1$, which value is missing?
 - You have $O(\log n)$ space

- **(Harder, “Keep a random team”)**
 - How can you maintain a uniformly random sample of S values out of those you have seen so far?
 - You can store exactly S items at any time

- **(Very hard, “Count the number of players”)**
 - What is the total number of values up to error $\pm \epsilon n$?
 - You have $O(\log \log n / \epsilon^2)$ space and can be completely wrong with some small probability
Part 1: Probability 101

“The bigger the data the better you should know your Probability”

• Basic Probability:
 – Probability, events, random variables
 – Expectation, variance / standard deviation
 – Conditional probability, independence, pairwise independence, mutual independence
Expectation

• $X = \text{random variable with values } x_1, \ldots, x_n, \ldots$

• Expectation $\mathbb{E}[X]$

$$\mathbb{E}[X] = \sum_{i=1}^{\infty} x_i \cdot \Pr[X = x_i]$$

• Properties (linearity):

$$\mathbb{E}[cX] = c\mathbb{E}[X]$$

$$\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

• Useful fact: if all $x_i \geq 0$ and integer then

$$\mathbb{E}[X] = \sum_{i=1}^{\infty} \Pr[X \geq i]$$
Variance

- Variance \(\text{Var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] \)

\[
\text{Var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \\
= \mathbb{E}[X^2] - 2X \cdot \mathbb{E}[X] + \mathbb{E}[X]^2 \\
= \mathbb{E}[X^2] - 2\mathbb{E}[X] \cdot \mathbb{E}[X] + \mathbb{E}[\mathbb{E}[X]^2]
\]

- \(\mathbb{E}[X] \) is some fixed value (a constant)
- \(2 \mathbb{E}[X \cdot \mathbb{E}[X]] = 2 \mathbb{E}[X] \cdot \mathbb{E}[X] = 2 \mathbb{E}^2[X] \)
- \(\mathbb{E}[\mathbb{E}[X]^2] = \mathbb{E}^2[X] \)
- \(\text{Var}[X] = \mathbb{E}[X^2] - 2 \mathbb{E}^2[X] + \mathbb{E}^2[X] = \mathbb{E}[X^2] - \mathbb{E}^2[X] \)
- Corollary: \(\text{Var}[cX] = c^2 \text{Var}[X] \)
Independence

• Two random variables X and Y are independent if and only if (iff) for every x, y:
 \[\Pr[X = x, Y = y] = \Pr[X = x] \cdot \Pr[Y = y] \]

• Variables X_1, \ldots, X_n are mutually independent iff
 \[\Pr[X_1 = x_1, \ldots, X_n = x_n] = \prod_{i=1}^{n} \Pr[X_i = x_i] \]

• Variables X_1, \ldots, X_n are pairwise independent iff for all pairs i, j
 \[\Pr[X_i = x_i, X_j = x_j] = \Pr[X_i = x_i] \Pr[X_j = x_j] \]
Conditional Probabilities

• For two events E_1 and E_2:

$$\Pr[E_2|E_1] = \frac{\Pr[E_1 \text{ and } E_2]}{\Pr[E_1]}$$

• If two random variables (r.vs) are independent

$$\Pr[X_2 = x_2|X_1 = x_1]$$

$$= \frac{\Pr[X_1=x_1 \text{ and } X_2=x_2]}{\Pr[X_1=x_1]} \quad \text{(by definition)}$$

$$= \frac{\Pr[X_1=x_1] \Pr[X_2=x_2]}{\Pr[X_1=x_1]} \quad \text{(by independence)}$$

$$= \Pr[X_2 = x_2]$$
Union Bound

For any events E_1, \ldots, E_k:
\[
\Pr[E_1 \text{ or } E_2 \text{ or } \ldots \text{ or } E_k] \leq \Pr[E_1] + \Pr[E_2] + \ldots + \Pr[E_k]
\]

- **Pro**: Works even for dependent variables!
- **Con**: Sometimes very loose, especially for mutually independent events

\[
\Pr[E_1 \text{ or } E_2 \text{ or } \ldots \text{ or } E_k] = 1 - \prod_{i=1}^{k}(1 - \Pr[E_i])
\]
Independence and Linearity of Expectation/Variance

- Linearity of expectation (even for dependent variables!):

\[\mathbb{E}\left[\sum_{i=1}^{k} X_i \right] = \sum_{i=1}^{k} \mathbb{E}[X_i] \]

- Linearity of variance (only for \textit{pairwise independent} variables!)

\[\text{Var}\left[\sum_{i=1}^{k} X_i \right] = \sum_{i=1}^{k} \text{Var}[X_i] \]
Part 2: Inequalities

- Markov inequality
- Chebyshev inequality
- Chernoff bound
Markov’s Inequality

• For every $c > 0$: $\Pr[X \geq c \mathbb{E}[X]] \leq \frac{1}{c}$

• Proof (by contradiction) $\Pr[X \geq c \mathbb{E}[X]] > \frac{1}{c}$

\[
\begin{align*}
\mathbb{E}[X] &= \sum_i i \cdot \Pr[X = i] \quad \text{(by definition)} \\
&\geq \sum_{i=c\mathbb{E}[X]}^{\infty} i \cdot \Pr[X = i] \quad \text{(pick only some } i \text{'s)} \\
&\geq \sum_{i=c\mathbb{E}[X]}^{\infty} c\mathbb{E}[X] \cdot \Pr[X = i] \quad (i \geq c\mathbb{E}[X]) \\
&= c\mathbb{E}[X] \sum_{i=c\mathbb{E}[X]}^{\infty} \Pr[X = i] \quad \text{(by linearity)} \\
&= c\mathbb{E}[X] \Pr[X \geq c \mathbb{E}[X]] \quad \text{(same as above)} \\
&> \mathbb{E}[X] \quad \text{(by assumption } \Pr[X \geq c \mathbb{E}[X]] > \frac{1}{c})
\end{align*}
\]
Markov’s Inequality

• For every $c > 0$: $\Pr[\mathbf{X} \geq c \, \mathbb{E}[\mathbf{X}]] \leq \frac{1}{c}$

• **Corollary** ($c' = c \, \mathbb{E}[\mathbf{X}]$):

 For every $c' > 0$: $\Pr[\mathbf{X} \geq c'] \leq \frac{\mathbb{E}[\mathbf{X}]}{c'}$

• **Pro**: always works!

• **Cons**:

 – Not very precise

 – Doesn’t work for the lower tail: $\Pr[\mathbf{X} \leq c \, \mathbb{E}[\mathbf{X}]]$
Chebyshev’s Inequality

- For every $c > 0$:
 \[
 \Pr \left[|X - \mathbb{E}[X]| \geq c \sqrt{\text{Var}[X]} \right] \leq \frac{1}{c^2}
 \]

- Proof:
 \[
 \Pr \left[|X - \mathbb{E}[X]| \geq c \sqrt{\text{Var}[X]} \right]
 = \Pr[|X - \mathbb{E}[X]|^2 \geq c^2 \text{Var}[X]] \quad \text{(by squaring)}
 = \Pr[|X - \mathbb{E}[X]|^2 \geq c^2 \mathbb{E}[|X - \mathbb{E}[X]|^2]] \quad \text{(def. of Var)}
 \leq \frac{1}{c^2} \quad \text{(by Markov’s inequality)}
 \]
Chebyshev’s Inequality

• For every $c > 0$:

$$\Pr \left[|X - \mathbb{E}[X]| \geq c \sqrt{\text{Var}[X]} \right] \leq \frac{1}{c^2}$$

• Corollary ($c' = c \sqrt{\text{Var}[X]}$):

For every $c' > 0$:

$$\Pr[|X - \mathbb{E}[X]| \geq c'] \leq \frac{\text{Var}[X]}{c'^2}$$
Chernoff bound

• Let $X_1 \ldots X_t$ be independent and identically distributed r.v.s with range $[0,1]$ and expectation μ.

• Then if $X = \frac{1}{t} \sum_i X_i$ and $1 > \delta > 0$,

$$\Pr[|X - \mu| \geq \delta \mu] \leq 2 \exp \left(-\frac{\mu t \delta^2}{3} \right)$$
Chernoff bound (corollary)

• Let $X_1 \ldots X_t$ be independent and identically distributed r.v.s with range $[0, c]$ and expectation μ.

• Then if $X = \frac{1}{t} \sum_i X_i$ and $1 > \delta > 0$,

\[
\Pr[|X - \mu| \geq \delta \mu] \leq 2 \exp\left(-\frac{\mu t \delta^2}{3c}\right)
\]
Large values of t is exactly what we need!

Let $X_1 \ldots X_t$ be independent and identically distributed r.vs with range $[0,1]$ and expectation μ. Let $X = \frac{1}{t} \sum_i X_i$.

- **Chebyshev**: $\Pr[|X - \mu| \geq z] = O \left(\frac{1}{t} \right)$
- **Chernoff**: $\Pr[|X - \mu| \geq z] = e^{-\Omega(t)}$

So is Chernoff always better for us?

- Yes, if we have i.i.d. variables.
- No, if we have dependent or only pairwise independent random variables.
- If the variables are not identical – Chernoff-type bounds exist.
Answers to the puzzles

You see a sequence of values a_1, \ldots, a_n, arriving one by one:

• **(Easy)**
 – If all $a_i's$ are different and have values between 1 and $n + 1$, which value is missing?
 – You have $O(\log n)$ space
 – **Answer:** missing value $= \sum_{i=1}^{n} i - \sum_{i=1}^{n} a_i$

• **(Harder)**
 – How can you maintain a uniformly random sample of S values out of those you have seen so far?
 – You can store exactly S values at any time
 – **Answer:** Store first a_1, \ldots, a_S. When you see a_i for $i > S$, with probability S/i replace random value from your storage with a_i.
Part 3: Morris’s Algorithm

• (Very hard, “Count the number of players”)
 – What is the total number of values up to error $\pm \epsilon n$?
 – You have $O(\log \log n / \epsilon^2)$ space and can be completely wrong with some small probability
Morris’s Algorithm: Alpha-version

Maintains a counter X using $\log \log n$ bits

- Initialize X to 0
- When an item arrives, increase X by 1 with probability $\frac{1}{2^X}$
- When the stream is over, output $2^X - 1$

Claim: $\mathbb{E}[2^X] = n + 1$
Morris’s Algorithm: Alpha-version

Maintains a counter X using $\log \log n$ bits

• Initialize X to 0, when an item arrives, increase X by 1 with probability $\frac{1}{2^X}$

Claim: $\mathbb{E}[2^X] = n + 1$

• Let the value after seeing n items be X_n

$$
\mathbb{E}[2^{X_n}] = \sum_{j=0}^{\infty} \text{Pr}[X_{n-1} = j] \mathbb{E}[2^{X_n} | X_{n-1} = j]
$$

$$
= \sum_{j=0}^{\infty} \text{Pr}[X_{n-1} = j] \left(\frac{1}{2j} 2^{j+1} + \left(1 - \frac{1}{2j} \right) 2^j \right)
$$

$$
= \sum_{j=0}^{\infty} \text{Pr}[X_{n-1} = j] (2^j + 1) = 1 + \mathbb{E}[2^{X_{n-1}}]
$$
Morris’s Algorithm: Alpha-version

Maintains a counter X using $\log \log n$ bits
- Initialize X to 0, when an item arrives, increase X by 1 with probability $\frac{1}{2^X}$

Claim: $\mathbb{E}[2^{2X}] = \frac{3}{2} n^2 + \frac{3}{2} n + 1$

$$
\mathbb{E}[2^{2X_n}] = \sum_{j=0}^{\infty} \Pr[2^{X_{n-1}} = j] \mathbb{E}[2^{2X_n}|2^{X_{n-1}} = j]
= \sum_{j=0}^{\infty} \Pr[2^{X_{n-1}} = j] \left(\frac{1}{j} 4 j^2 + \left(1 - \frac{1}{j} \right) j^2 \right)
= \sum_{j=0}^{\infty} \Pr[2^{X_{n-1}} = j] (j^2 + 3j) = \mathbb{E}[2^{2X_{n-1}}] + 3 \mathbb{E}[2^{X_{n-1}}]
= 3 \frac{(n - 1)^2}{2} + 3(n - 1)/2 + 1 + 3n
$$
Morris’s Algorithm: Alpha-version

Maintains a counter X using $\log \log n$ bits

- Initialize X to 0, when an item arrives, increase X by 1 with probability $\frac{1}{2^X}$
- $\mathbb{E}[2^X] = n + 1$, $Var[2^X] = O(n^2)$
- Is this good?
Morris’s Algorithm: Beta-version

Maintains t counters X^1, \ldots, X^t using $\log \log n$ bits for each

- Initialize X^i’s to 0, when an item arrives, increase each X^i by 1 independently with probability $\frac{1}{2^{X^i}}$

- Output $Z = \frac{1}{t} (\sum_{i=1}^{t} 2^{X^i} - 1)$

- $\mathbb{E}[2^{X^i}] = n + 1, \text{Var}[2^{X^i}] = O(n^2)$

- $\text{Var}[Z] = \text{Var} \left(\frac{1}{t} \sum_{j=1}^{t} 2^{X^j} - 1 \right) = O \left(\frac{n^2}{t} \right)$

- Claim: If $t \geq \frac{c}{\epsilon^2}$ then $\Pr[|Z - n| > \epsilon n] < 1/3$
Morris’s Algorithm: Beta-version

Maintains \(t \) counters \(X^1, \ldots, X^t \) using \(\log \log n \) bits for each.

- Output \(Z = \frac{1}{t} \left(\sum_{i=1}^{t} 2^{X_i} - 1 \right) \)

- \(\text{Var}[Z] = \text{Var} \left(\frac{1}{t} \sum_{j=1}^{t} 2^{X_j} - 1 \right) = O \left(\frac{n^2}{t} \right) \)

- Claim: If \(t \geq \frac{c}{\epsilon^2} \) then \(\Pr[|Z - n| > \epsilon n] < 1/3 \)

- \(\Pr[|Z - n| > \epsilon n] < \frac{\text{Var}[Z]}{\epsilon^2 n^2} = O \left(\frac{n^2}{t} \right) \cdot \frac{1}{\epsilon^2 n^2} \)

- If \(t \geq \frac{c}{\epsilon^2} \) we can make this at most \(\frac{1}{3} \)
Morris’s Algorithm: Final

• What if I want the probability of error to be really small, i.e. $\Pr[|Z - n| > \epsilon n] \leq \delta$?

• Same Chebyshev-based analysis: $t = O \left(\frac{1}{\epsilon^2 \delta} \right)$

• Do these steps $m = O \left(\log \frac{1}{\delta} \right)$ times independently in parallel and output the median answer.

• Total space: $O \left(\frac{\log \log n \cdot \log \frac{1}{\delta}}{\epsilon^2} \right)$
Morris’s Algorithm: Final

• Do these steps $m = O \left(\log \frac{1}{\delta} \right)$ times independently in parallel and output the median answer Z^m.

Maintains t counters X^1, \ldots, X^t using $\log \log n$ bits for each

• Initialize $X^{i'}$s to 0, when an item arrives, increase each X^i by 1 independently with probability $\frac{1}{2^{X^i}}$

• Output $Z = \frac{1}{t} \left(\sum_{i=1}^{t} 2^{X^i} - 1 \right)$
Morris's Algorithm: Final Analysis

Claim: \(\Pr[|Z^m - n| > \epsilon n] \leq \delta \)

- Let \(Y_i \) be an indicator r.v. for the event that \(|Z_i - n| \leq \epsilon n \), where \(Z_i \) is the i-th trial.
- Let \(Y = \sum_i Y_i \).

\[
\Pr[|Z^m - n| > \epsilon n] \leq \Pr \left[Y \leq \frac{m}{2} \right] \leq \Pr \left[|Y - \mathbb{E}[Y]| \geq \frac{m}{6} \right] \leq \Pr \left[|Y - \mathbb{E}[Y]| \geq \frac{\mu}{4} \right] \leq \exp \left(-c \frac{1}{4^2} \frac{2m}{3} \right) < \exp \left(-c \log \frac{1}{\delta} \right) < \delta
\]
Thank you!

• Questions?

• **Next time:**
 – More streaming algorithms