CSCI B609:
“Foundations of Data Science”

Lecture 21/22: Massively Parallel
Algorithms

Slides at http://erigory.us/data-science-class.html

Grigory Yaroslavtsev
http://grigory.us

http://grigory.us/
http://grigory.us/data-science-class.html
http://grigory.us/data-science-class.html
http://grigory.us/data-science-class.html
http://grigory.us/data-science-class.html
http://grigory.us/data-science-class.html

Big Data = buzzword

* Non-experts, media:

— a lot of spreadsheets, medica

| data,
— electropop band

. - . " v A x .00
400,00) * § (57.960,00) s 9855 ' 200,00 " w
041,00 *3$ s $ 3500 s 6.589,00 . W
457,00) $ Qawm7.00) L] - B.74) 00 L 3 2.254 00 . 2
131,00 £ 3 6.409,00 LY 4 256,00 * 3387 .00 >
776,00) "4 (8.763,00) % T 322200 % (2554.00) .
773,00 $ 12.997,00 vs S \ [3 214,00 % 987,00 s
205,00) ' $. ,00) 22) -~ ~% 997,00 % {1.298,00) s
225,00 =4 s Hg‘;oz Yo" 4 568700 % 791200 26,00 8
641,00 A5 2330700 T§ . 08 e o, 90300 4§ 1347400 3,200 s VEALDD 8
$ 60.113,00 $ iy 4 (A8BB7,00) % 6%.000,00 4 69887 00 *
4 (149.453,00) 44 4 23049000 4 218.506,00 r4y 65685300 4
LUBSD 5 WbLZLUU F ASEMUU % HODEA 3 X
2.122,00) '$ (25.283,00) *'§ : 2.147,00 ¥4 25,00 4 2SI300
0.409,00) ¥ (57.960,00) *§ (S8 85 0 (554,00) % 9685200
3.041,00 $ (23.780,00) *$ (3.9 . 56,80 6.589,00 A2, 00% % 3695800
6.487,00) 4 (18.387,00) %% (8.741,0070% s e 2.254,00 S 4 228950
3.131,00 4% 640900 s 256,00) =4 7.613,06 vy 365,00 F§ 3.387 00 s 365 0
5.776,00) "4 (8.763,00) ¥4 (3.222,00) ~% 263597 ~s 165500 -4 554,00 97 00%a $ 3855
6.773,00 ~§ 12997,00 ~§ (214,00) =% 16.691,02 s 977,00 s . 2,000 % a7
12,295,00) *'$ (1.388,00) s (997,00) * § 0 00) v 4 s 0,50% s %
6.773,00 s 12.997,00 L) (214,00) ~ 3 16.691 02 s s L) 9
(2.295,0¢ s Ym0 s 907,06 s s w3 s "
= . wa o . sy o . . - - P

Big Data = buzzword

* Business experts, analysts, data scientists:
— Volume, velocity, variety, (veracity)

— Databases, statistics, cloud computing, machine
learning, privacy, ...

Scale of W m&ffzfebzta @ Stor
Big Big Data 2015
Wta

Uncertainty
of Data

Big Data: technical definition

* “Big Data” = “Data that doesn’t fit in RAM”

— Massively parallel computing:
MapReduce/Hadoop/Apache Spark

— Streaming: Apache Storm, etc.

— “algorithms for Big Data” class at Penn:
http://grigory.us/big-data-class.html

@
Q /)
f& o | :
i =

CIS700: |
N KEEP CALM

AND

CRUNCH

http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html

Algorithms for Big Data

* Algorithms/theory perspective: a

fundamental challenge
— Data fits into RAM = decades of previous work

— Data doesn’t fit into RAM = algorithmic
challenges are qualitative, not quantitative

—
| =
75
I
b=
Tonp "
-
o]
=
"]

F "-":
1 I
{
[

.

Algorithms for Big Data

* User’s perspective: paradigm shift brought by
cloud services

— Outsourcing computation and data storage is
great for both businesses and researchers

— Cloud service providers: Amazon EC2, Google
Compute Engine, ...

— Open source stacks/frameworks:
MapReduce/Hadoop, Apache Spark, etc.

o K¢
oy [11C !
smazon [ECD @ ChEdbem — Spark
webservices™

52) STORM

* Pricings:

— https://cloud.google.com/pricing/

— https://aws.amazon.com/pricing/

 ~Linear with space and time usage
— 100 machines: 5K $/year
— 10000 machines: 0.5M S$/year

* You pay a lot more for using provided
algorithms

— https://aws.amazon.com/machine-

learning/pricing/

https://cloud.google.com/pricing/
https://aws.amazon.com/pricing/
https://aws.amazon.com/machine-learning/pricing/
https://aws.amazon.com/machine-learning/pricing/
https://aws.amazon.com/machine-learning/pricing/

Getting hands dirty

* Cloud computing platforms (all offer free trials):

— Amazon EC2 (1 CPU/12mo)
| amazon [EC2
— Microsoft Azure (S200/1mo) Eg

— Google Compute Engine (5200/2mo) WG

* Distributed Google Code Jam

— First time in 2015:
https://code.google.com/codejam/distributed index.html

— Caveats:

* Very basic aspects of distributed algorithms (few rounds)
 Small data (~1 GB, with hundreds MB RAM)
* Fast query access (~0.01 ms per request), “data with queries”

https://code.google.com/codejam/distributed_index.html

“Big Data Theory” = Turing meets Shannon

Complexity

Computational Model

* Input: sizen

e M machines, space Soneach(S=n'"°¢,0<e<1)
— Constant overhead in total space: M-S = 0(n)

* Output: solution to a problem (often size O(n))

— Doesn’t fit on a single machine (§ K n)

Input: size n = % = Output: size 0(n)

<l
e

S space

} M machines

Computational Model

* Computation/Communication in R rounds:

— Every machine performs a near-linear time
computation => Total running time 0 (n'"°(WR)

— Every machine sends/receives at most S bits of
information => Total communication O (nR).

Goal: Minimize R. Ideally: R = constant.

-
e

0(S1t°M) time

ce

MapReduce-style computations

YaHoO! Godgle

What | won’t discuss today

* PRAMs (shared memory, multiple processors) (see
e.g. [Karloff, Suri, Vassilvitskii‘10])
— Computing XOR requires Q(logn) rounds in CRCW PRAM
— Can be done in O(logg n) rounds of MapReduce

* Pregel-style systems, Distributed Hash Tables (see
e.g. Ashish Goel’s class notes and papers)

* Lower-level implementation details (see e.g. ===
Rajaraman-Leskovec-Ullman book) @

Models of parallel computation

e Bulk-Synchronous Parallel Model (BSP) [Valiant,90]

Pro: Most general, generalizes all other models
Con: Many parameters, hard to design algorithms
* Massive Parallel Computation [Feldman-Muthukrishnan-

Sidiropoulos-Stein-Svitkina’07, Karloff-Suri-Vassilvitskii’10,
Goodrich-Sitchinava-Zhang’1l, ..., Beame, Koutris, Suciu’13]

Pros:

* Inspired by modern systems (Hadoop, MapReduce, Dryad, ...)
 Few parameters, simple to design algorithms

* New algorithmic ideas, robust to the exact model specification

* # Rounds is an information-theoretic measure => can prove
unconditional lower bounds

* Between linear sketching and streaming with sorting

Sorting: Terasort

Sort Benchmark: http://sortbenchmark.org/
Sorting n keys on M = 0(n'~¢) machines

— Would like to partition keys uniformly into blocks: first n/M,
second n/M, etc.

— Sort the keys locally on each machine

Build an approximate histogram:

— Each machine takes a sample of size s

— AllM *s < S = n® samples are sorted locally
— Blocks are computed based on the samples

By Chernoff: M *s = 0 (logzn) samples suffice to compute

all block sizes up to +an error with high probability

€e—1
Take a = ~—: error 0(S)
M*s=0(m?>2€) = 0M?) < 0n°) fore >2/3

n

Algorithms for Graphs

* Dense graphs vs. sparse graphs
— Dense: S > |V]

* Linear sketching: one round

e “Filtering” (Output fits on a single machine) [Karloff,
Suri Vassilvitskii, SODA’10; Ene, Im, Moseley, KDD’'11;
Lattanzi, Moseley, Suri, Vassilvitskii, SPAA’11; Suri,
Vassilvitskii, WWW’11]

— Sparse: § < |V| (or § < solution size)

Sparse graph problems appear hard (Big open question:
connectivity in o(log n) rounds?)

C = ad

Algorithm for Connectivity

Blog: http://grigory.us/blog/mapreduce-model/
Version of Boruvka’s algorithm

Repeat O(logn) times:

— Each component chooses a neighboring component
— All pairs of chosen components get merged

How to avoid chaining?

If the graph of components is bipartite and only
one side gets to choose then no chaining

Randomly assign components to the sides

http://grigory.us/blog/mapreduce-model/
http://grigory.us/blog/mapreduce-model/
http://grigory.us/blog/mapreduce-model/

Algorithm for Connectivity: Setup

Data: N edges of an undirected graph.

Notation:
* Forv €V letm(v) beitsidin the data
* T'(S) = set of neighbors of a subset of vertices SCV.

Labels:
* Algorithms assigns a label £(v) to each v.

* Let L, € V be the set of vertices with the label £(v)
(invariant: subset of the connected component
containing v).

Active vertices:
e Some vertices will be called active.
* Every set L, will have exactly one active vertex.

Algorithm for Connectivity

Mark every vertex as active and let £(v) = m(v).
For phasesi = 1,2, ...,0(log N) do:

— Call each active vertex a leader with probability 1/2.
If v is a leader, mark all vertices in L,, as leaders.

— For every active non-leader vertex w, find the
smallest leader(with respect to i) vertex w* € I'(L,,).

— If w” is not empty, mark w passive and relabel each
vertex with label w by w™.

Output the set of CCs, where vertices having the

same label according to £ are in the same

component.

Algorithm for Connectivity: Analysis

 Iff(u) =¥ (v)thenu and v are in the same CC.
* Unique labels w.h.p after O(log N) phases.
 For every CC # active vertices reduces by a constant
factor in every phase.
— Half of the active vertices declared as non-leaders.
— Fix an active non-leader vertex v.
— If at least two different labels in the CC of v then there is
an edge (v',u) such that (v) = £(v") and (V") # £(u).
— u marked as a leader with probability 1/2; in expectation

half of the active non-leader vertices will change their
label.

— Overall, expect 1/4 of labels to disappear.

— By Chernoff after O(log N) phases # of active labels in
every connected component will drop to one w.h.p.

Algorithm for Connectivity:
Implementation Details

Distributed data structure of size O(|V|) to maintain
labels, ids, leader/non-leader status, etc.

— O(1) rounds per stage to update the data structure

Edges stored locally with all auxiliary info

— Between stages: use distributed data structure to update
local info on edges

For every active non-leader vertex w, find the
smallest leader (w.r.t) vertex w* € I'(L,,)

— Each (non-leader, leader) edges sends an update to the
distributed data structure

Much faster with Distributed Hash Table Service (DHT)
[Kiveris, Lattanzi, Mirrokni, Rastogi, Vassilvitskii’14]

Approximating Geometric Problems
in Parallel Models

Geometric graph (implicit):
Euclidean distances between n points in R?

__ { ,,'f

e it ST B

(Traveling Salesman, Steiner Tree, etc.)
* Minimum Spanning Tree (clustering, vision)
 Minimum Cost Bichromatic Matching (vision)

Geometric Graph Problems

Combinatorial problems on graphs in R

Polynomial time (“easy”)

* Minimum Spanning Tree

* Earth-Mover Distance =

Min Weight Bi-chromatic Matching

d (“hard”)

* Steiner Tret
* Traveling Salesman gpCasy to implement in
* Clustering (Lane®®ns, facility Mgssively Parallel

Computc odels,
but bad running tinTe

SaeerOT, etc.)

MST: Single Linkage Clustering

* Blog: http://grigory.us/blog/mapreduce-clustering/
e [Zahn’71] Clustering via MST (Single-linkage):
k clusters: remove k — 1 longest edges from MST

e Maximizes minimum intercluster distance

quality of this

partitioning is O
min{a,b,c} O

[Kleinberg, Tardos]

http://grigory.us/blog/mapreduce-clustering/
http://grigory.us/blog/mapreduce-clustering/
http://grigory.us/blog/mapreduce-clustering/
http://grigory.us/blog/mapreduce-clustering/

Earth-Mover Distance

 Computer vision: compare two pictures of
moving objects (stars, MRI scans)

Large geometric graphs

* Graph algorithms: Dense graphs vs. sparse graphs
— Dense: S > |V].
— Sparse: § < |V].

* Qur setting:
— Dense graphs, sparsely represented: O(n) space

— Output doesn’t fit on one machine (§ < n)

* Today: (1 + €)-approximate MST
— d = 2 (easy to generalize)
— R =loggn = 0O(1) rounds (§ = n®D)

O(logn)-MSTin R = O(logn) rounds

* Assume points have integer coordinates [0, ..., A], where
A =0(n?).

Impose an O (logn)- depth quadtree
Bottom-up: ForzeaeF

— compute ofFtiFiL
— Use only onedigs mieach on the next level

. Wrong representative:
\(.\/ O(1)-approximation per level

B

€L-nets
eL-net for a cell C with side length L:

Collection S of vertices in C, every vertex is at distance <= elL from some
vertex in S. (Fact: Can efficiently compute e-net of size O (6—2)

Bottom-up: For each cell in the quadtree

— Compute optimum MSTs in subcells
— Use €L-net from each cell on the next level

Idea: Pay only O(€L) for an edge cut by cell with side L

Randomly shift the quadtree:
Pricut edge of length ¥Wbonk [{presehtatblvarge errors

O(1)-appryximation per level

A N

L L L

Randomly shifted quadtree

* Top cell shifted by a random vector in [0, L]?
Impose a randomly shifted quadtree (top cell length 2A)

Bottom-up: For each cell in the quadtree
— Compute optimum MSTs in subcells
— Use €L-net from each cell on the next level

o (I Pay 5 jnstead of 4

2

Ll] Pr[BaEaéfl L 01)
—

(14 €)-MSTinR = 0(log n) rounds

 |dea: Only use short edges inside the cells

Impose a randomly shifted quadtree (top cell length ZE—A)

Bottom-up: For each node (cell) in the quadtree

— compute optimum Minimum Spanning Forests in subcells,
using edges of length < €L

— Use only €?L-net from each cell on the next level

A

L=0()

AT
I Pr[Bad Cut] = O(e€)

(1+€)-MSTinR = 0(1) rounds

* O(logn) rounds => O(logg n) = O(1) rounds
— Flatten the tree: (VM x v/M)-grids instead of (2x2) grids at

each level.
}m — 0

=

Impose a randomly shifted (VM X VM)-tree
Bottom-up: For each node (cell) in the tree
— compute optimum MSTs in subcells via edges of length < €L

— Use only €% L-net from each cell on the next level

(1+ €)-MSTinR = 0(1) rounds

Theorem: Let | = # levels in a random tree P
Ep[ALG] < (1 + O(eld))OPT

Proof (sketch):

* Ap(u,v) = cell length, which first partitions (u, v)

* New weights:

||u —UH2 <

e QOur algorith

“Solve-And-Sketch” Framework

(1 + €)-MST:

— “Load balancing”: partition the tree into parts of
the same size

— Almost linear time locally: Approximate Nearest
Neighbor data structure [Indyk’99]

— Dependence on dimension d (size of e-net is

N
0(2))
— Generalizes to bounded doubling dimension
— Implementation in MapReduce

“Solve-And-Sketch” Framework

(1 + €)-Earth-Mover Distance, Transportation Cost

* No simple “divide-and-conquer” Arora-Mitchell-style
algorithm (unlike for general matching)

* Only recently sequential (1 + €)-apprxoimation in
OG(nlogO(l) n)time [Sharathkumar, Agarwal ‘12]

Our approach (convex sketching):
 Switch to the flow-based version

* |In every cell, send the flow to the closest net-point
until we can connect the net points

“Solve-And-Sketch” Framework

Convex sketching the cost function for T net
points

e F:R* ! - R = the cost of routing fixed
amounts of flow through the net points

* Function F' = F + “normalization” is
monotone, convex and Lipschitz, (1 + €)-
approximates F

 We can (1 + €)-sketch it using a lower convex
hull

Thank you! http://grigory.us

e More in the CIS 700 class:
http://erigory.us/big-data-class.html

http://grigory.us/
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html

