
CSCI B609:
“Foundations of Data Science”

Grigory Yaroslavtsev
http://grigory.us

Lecture 21/22: Massively Parallel
Algorithms

Slides at http://grigory.us/data-science-class.html

http://grigory.us/
http://grigory.us/data-science-class.html
http://grigory.us/data-science-class.html
http://grigory.us/data-science-class.html
http://grigory.us/data-science-class.html
http://grigory.us/data-science-class.html

Big Data = buzzword

• Non-experts, media:

– a lot of spreadsheets, medical data,

– electropop band

– …

Big Data = buzzword

• Business experts, analysts, data scientists:

– Volume, velocity, variety, (veracity)

– Databases, statistics, cloud computing, machine
learning, privacy, …

Big Data: technical definition

• “Big Data” = “Data that doesn’t fit in RAM”
– Massively parallel computing:

MapReduce/Hadoop/Apache Spark

– Streaming: Apache Storm, etc.

– “algorithms for Big Data” class at Penn:
http://grigory.us/big-data-class.html

http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html

Algorithms for Big Data

• Algorithms/theory perspective: a
fundamental challenge

– Data fits into RAM ⇒ decades of previous work

– Data doesn’t fit into RAM ⇒ algorithmic
challenges are qualitative, not quantitative

Algorithms for Big Data

• User’s perspective: paradigm shift brought by
cloud services

– Outsourcing computation and data storage is
great for both businesses and researchers

– Cloud service providers: Amazon EC2, Google
Compute Engine, …

– Open source stacks/frameworks:
MapReduce/Hadoop, Apache Spark, etc.

Business perspective

• Pricings:

– https://cloud.google.com/pricing/

– https://aws.amazon.com/pricing/

• ~Linear with space and time usage

– 100 machines: 5K $/year

– 10000 machines: 0.5M $/year

• You pay a lot more for using provided
algorithms

– https://aws.amazon.com/machine-
learning/pricing/

https://cloud.google.com/pricing/
https://aws.amazon.com/pricing/
https://aws.amazon.com/machine-learning/pricing/
https://aws.amazon.com/machine-learning/pricing/
https://aws.amazon.com/machine-learning/pricing/

• Cloud computing platforms (all offer free trials):

– Amazon EC2 (1 CPU/12mo)

– Microsoft Azure ($200/1mo)

– Google Compute Engine ($200/2mo)

• Distributed Google Code Jam

– First time in 2015:
https://code.google.com/codejam/distributed_index.html

– Caveats:

• Very basic aspects of distributed algorithms (few rounds)

• Small data (~1 𝐺𝐵, with hundreds MB RAM)

• Fast query access (~0.01 𝑚𝑠 per request), “data with queries”

Getting hands dirty

https://code.google.com/codejam/distributed_index.html

“Big Data Theory” = Turing meets Shannon

= +
Network Time /
Information and
Communication

Complexity

CPU time /
Computational

Complexity

Computational Model
• Input: size n

• 𝑴 machines, space 𝑺 on each (𝑺 = 𝒏1−𝜖 , 0 < 𝜖 < 1)

– Constant overhead in total space: 𝑴 ⋅ 𝑺 = 𝑂(𝒏)

• Output: solution to a problem (often size O(𝒏))

– Doesn’t fit on a single machine (𝑺 ≪ 𝒏)

 𝑴 machines
S space

𝐈𝐧𝐩𝐮𝐭: size 𝒏 ⇒ ⇒ 𝐎𝐮𝐭𝐩𝐮𝐭: 𝑠𝑖𝑧𝑒 𝑂(𝒏)

 𝑴 machines
S space

Computational Model
• Computation/Communication in 𝑹 rounds:

– Every machine performs a near-linear time
computation => Total running time 𝑂(𝒏𝟏+𝒐(𝟏)𝑹)

– Every machine sends/receives at most 𝑺 bits of
information => Total communication 𝑂(𝒏𝑹).

Goal: Minimize 𝑹. Ideally: 𝑹 = constant.

𝑶(𝑺𝟏+𝒐(𝟏)) time

≤ 𝑺 bits

MapReduce-style computations

What I won’t discuss today
• PRAMs (shared memory, multiple processors) (see

e.g. [Karloff, Suri, Vassilvitskii‘10+)
– Computing XOR requires Ω (log 𝑛) rounds in CRCW PRAM
– Can be done in 𝑂(log𝒔 𝑛) rounds of MapReduce

• Pregel-style systems, Distributed Hash Tables (see
e.g. Ashish Goel’s class notes and papers)

• Lower-level implementation details (see e.g.
Rajaraman-Leskovec-Ullman book)

Models of parallel computation
• Bulk-Synchronous Parallel Model (BSP) [Valiant,90]

Pro: Most general, generalizes all other models

Con: Many parameters, hard to design algorithms

• Massive Parallel Computation [Feldman-Muthukrishnan-
Sidiropoulos-Stein-Svitkina’07, Karloff-Suri-Vassilvitskii’10,
Goodrich-Sitchinava-Zhang’11, ..., Beame, Koutris, Suciu’13]

Pros:

• Inspired by modern systems (Hadoop, MapReduce, Dryad, …)

• Few parameters, simple to design algorithms

• New algorithmic ideas, robust to the exact model specification

• # Rounds is an information-theoretic measure => can prove
unconditional lower bounds

• Between linear sketching and streaming with sorting

Sorting: Terasort

• Sort Benchmark: http://sortbenchmark.org/
• Sorting 𝒏 keys on 𝑴 = 𝑶(𝒏𝟏−𝝐) machines

– Would like to partition keys uniformly into blocks: first 𝒏/𝑴,
second 𝒏/𝑴, etc.

– Sort the keys locally on each machine

• Build an approximate histogram:
– Each machine takes a sample of size 𝒔
– All 𝑴 ∗ 𝒔 ≤ 𝑺 = 𝒏𝝐 samples are sorted locally
– Blocks are computed based on the samples

• By Chernoff: 𝐌 ∗ 𝒔 = 𝑂
𝑙𝑜𝑔 𝒏

𝜶𝟐 samples suffice to compute
all block sizes up to ±𝜶𝒏 error with high probability

• Take 𝛼 =
𝒏𝜖−1

2
: error O 𝑺

• 𝐌 ∗ 𝒔 = 𝑂(𝒏2−𝟐𝝐) = 𝑶(𝑴𝟐) ≤ 𝑶(𝒏𝝐) for 𝜖 ≥ 2/3

Algorithms for Graphs
• Dense graphs vs. sparse graphs

– Dense: 𝑺 ≫ |𝑉|

• Linear sketching: one round

• “Filtering” (Output fits on a single machine) [Karloff,
Suri Vassilvitskii, SODA’10; Ene, Im, Moseley, KDD’11;
Lattanzi, Moseley, Suri, Vassilvitskii, SPAA’11; Suri,
Vassilvitskii, WWW’11]

– Sparse: 𝑺 ≪ |𝑉| (or 𝑺 ≪ solution size)

Sparse graph problems appear hard (Big open question:
connectivity in o(log 𝑛) rounds?)

VS.

Algorithm for Connectivity

• Blog: http://grigory.us/blog/mapreduce-model/

• Version of Boruvka’s algorithm

• Repeat 𝑂(log 𝑛) times:
– Each component chooses a neighboring component

– All pairs of chosen components get merged

• How to avoid chaining?

• If the graph of components is bipartite and only
one side gets to choose then no chaining

• Randomly assign components to the sides

http://grigory.us/blog/mapreduce-model/
http://grigory.us/blog/mapreduce-model/
http://grigory.us/blog/mapreduce-model/

Algorithm for Connectivity: Setup
Data: N edges of an undirected graph.

Notation:
• For 𝑣 ∈ 𝑉 let 𝜋(𝑣) be its id in the data
• Γ(𝑆) ≡ set of neighbors of a subset of vertices S⊆V.

Labels:
• Algorithms assigns a label ℓ(𝑣) to each v.
• Let 𝐿𝑣 ⊆ 𝑉 be the set of vertices with the label ℓ(𝑣)

(invariant: subset of the connected component
containing 𝑣).

Active vertices:
• Some vertices will be called active.
• Every set 𝐿𝑣 will have exactly one active vertex.

Algorithm for Connectivity

• Mark every vertex as active and let ℓ(𝑣) = 𝜋(𝑣).

• For phases 𝑖 = 1,2, … , 𝑂(log 𝑁) do:
– Call each active vertex a leader with probability 1/2.

If v is a leader, mark all vertices in 𝐿𝑣 as leaders.

– For every active non-leader vertex w, find the
smallest leader(with respect to 𝜋) vertex w⋆ ∈ Γ(𝐿𝑤).

– If w⋆ is not empty, mark w passive and relabel each
vertex with label w by w⋆.

• Output the set of CCs, where vertices having the
same label according to ℓ are in the same
component.

Algorithm for Connectivity: Analysis
• If ℓ(𝑢) = ℓ(𝑣) then 𝑢 and 𝑣 are in the same CC.

• Unique labels w.h.p after 𝑂(log𝑁) phases.

• For every CC # active vertices reduces by a constant
factor in every phase.
– Half of the active vertices declared as non-leaders.

– Fix an active non-leader vertex 𝒗.

– If at least two different labels in the CC of v then there is
an edge (𝒗′, 𝒖) such that ℓ(𝒗) = ℓ(𝒗′) and ℓ(𝒗′) ≠ ℓ(𝒖).

– 𝒖 marked as a leader with probability 1/2; in expectation
half of the active non-leader vertices will change their
label.

– Overall, expect 1/4 of labels to disappear.

– By Chernoff after 𝑂(log𝑁) phases # of active labels in
every connected component will drop to one w.h.p.

Algorithm for Connectivity:
Implementation Details

• Distributed data structure of size 𝑂 𝑉 to maintain
labels, ids, leader/non-leader status, etc.
– O(1) rounds per stage to update the data structure

• Edges stored locally with all auxiliary info
– Between stages: use distributed data structure to update

local info on edges

• For every active non-leader vertex w, find the
smallest leader (w.r.t 𝜋) vertex w⋆ ∈ Γ(𝐿𝑤)
– Each (non-leader, leader) edges sends an update to the

distributed data structure

• Much faster with Distributed Hash Table Service (DHT)
[Kiveris, Lattanzi, Mirrokni, Rastogi, Vassilvitskii’14+

Approximating Geometric Problems
in Parallel Models

Geometric graph (implicit):

Euclidean distances between n points in ℝ𝒅

Already have solutions for old NP-hard problems
(Traveling Salesman, Steiner Tree, etc.)

• Minimum Spanning Tree (clustering, vision)

• Minimum Cost Bichromatic Matching (vision)

Polynomial time (“easy”)

• Minimum Spanning Tree

• Earth-Mover Distance =

Min Weight Bi-chromatic Matching

NP-hard (“hard”)

• Steiner Tree

• Traveling Salesman

• Clustering (k-medians, facility
location, etc.)

Geometric Graph Problems

Combinatorial problems on graphs in ℝ𝒅

Arora-Mitchell-style
“Divide and Conquer”,
easy to implement in
Massively Parallel
Computational Models,
but bad running time

 Need new theory!

MST: Single Linkage Clustering
• Blog: http://grigory.us/blog/mapreduce-clustering/

• *Zahn’71+ Clustering via MST (Single-linkage):

k clusters: remove 𝒌 − 𝟏 longest edges from MST

• Maximizes minimum intercluster distance

[Kleinberg, Tardos]

http://grigory.us/blog/mapreduce-clustering/
http://grigory.us/blog/mapreduce-clustering/
http://grigory.us/blog/mapreduce-clustering/
http://grigory.us/blog/mapreduce-clustering/

Earth-Mover Distance

• Computer vision: compare two pictures of
moving objects (stars, MRI scans)

Large geometric graphs
• Graph algorithms: Dense graphs vs. sparse graphs

– Dense: 𝑺 ≫ |𝑉|.

– Sparse: 𝑺 ≪ |𝑉|.

• Our setting:
– Dense graphs, sparsely represented: O(n) space

– Output doesn’t fit on one machine (𝑺 ≪ 𝒏)

• Today: (1 + 𝜖)-approximate MST
– 𝒅 = 2 (easy to generalize)

– 𝑹 = log𝑺 𝒏= O(1) rounds (𝑺 = 𝒏𝛀(𝟏))

𝑂(log 𝑛)-MST in 𝑅 = 𝑂(log 𝑛) rounds

• Assume points have integer coordinates 0,… , Δ , where
Δ = 𝑂 𝒏𝟐 .

Impose an 𝑂(log 𝒏)-depth quadtree
Bottom-up: For each cell in the quadtree

– compute optimum MSTs in subcells
– Use only one representative from each cell on the next level

Wrong representative:
O(1)-approximation per level

Wrong representative:
O(1)-approximation per level

𝝐𝑳-nets
• 𝝐𝑳-net for a cell C with side length 𝑳:

Collection S of vertices in C, every vertex is at distance <= 𝝐𝑳 from some
vertex in S. (Fact: Can efficiently compute 𝝐-net of size 𝑂

1

𝝐2)

 Bottom-up: For each cell in the quadtree
– Compute optimum MSTs in subcells
– Use 𝝐𝑳-net from each cell on the next level

• Idea: Pay only O(𝝐𝑳) for an edge cut by cell with side 𝑳
• Randomly shift the quadtree:

Pr 𝑐𝑢𝑡 𝑒𝑑𝑔𝑒 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡𝑕 ℓ 𝑏𝑦 𝑳 ∼ ℓ/𝑳 – charge errors

𝑳 𝑳 𝜖𝑳

Randomly shifted quadtree
• Top cell shifted by a random vector in 0, 𝑳 2

Impose a randomly shifted quadtree (top cell length 𝟐𝚫)

 Bottom-up: For each cell in the quadtree

– Compute optimum MSTs in subcells

– Use 𝝐𝑳-net from each cell on the next level

Pay 5 instead of 4
Pr[𝐁𝐚𝐝 𝐂𝐮𝐭] = 𝛀(1)

2

1

𝐁𝐚𝐝 𝐂𝐮𝐭

1 + 𝝐 -MST in 𝐑 = 𝑂(log 𝑛) rounds
• Idea: Only use short edges inside the cells

Impose a randomly shifted quadtree (top cell length
𝟐𝚫

𝝐
)

 Bottom-up: For each node (cell) in the quadtree

– compute optimum Minimum Spanning Forests in subcells,
using edges of length ≤ 𝝐𝑳

– Use only 𝝐𝟐𝑳-net from each cell on the next level

Sketch of analysis (𝑻∗ = optimum MST):
𝔼[Extra cost] =
𝔼[Pr 𝒆 𝑖𝑠 𝑐𝑢𝑡 𝑏𝑦 𝑐𝑒𝑙𝑙 𝑤𝑖𝑡𝑕 𝑠𝑖𝑑𝑒 𝑳 ⋅ 𝝐𝑳𝒆∈𝑻∗]

≤ 𝝐 log 𝒏 𝑑 𝒆

𝒆∈𝑻∗

=

𝝐 log 𝒏 ⋅ 𝑐𝑜𝑠𝑡(𝑻∗)

2

1

Pr[𝐁𝐚𝐝 𝐂𝐮𝐭] = 𝑶(𝝐)

𝑳 = 𝛀(
𝟏

𝝐
)

1 + 𝝐 -MST in 𝐑 = 𝑂(1) rounds

• 𝑂(log 𝒏) rounds => O(log𝑺 𝒏) = O(1) rounds

– Flatten the tree: (𝑴 × 𝑴)-grids instead of (2x2) grids at
each level.

Impose a randomly shifted (𝑴 × 𝑴)-tree

 Bottom-up: For each node (cell) in the tree

– compute optimum MSTs in subcells via edges of length ≤ 𝝐𝑳

– Use only 𝝐𝟐𝑳-net from each cell on the next level

⇒ 𝑴 = 𝒏Ω(1)

1 + 𝝐 -MST in 𝐑 = 𝑂(1) rounds

Theorem: Let 𝒍 = # levels in a random tree P
𝔼𝑷 𝐀𝐋𝐆 ≤ 1 + 𝑂 𝝐𝒍𝒅 𝐎𝐏𝐓

Proof (sketch):
• 𝚫𝑷(𝑢, 𝑣) = cell length, which first partitions (𝑢, 𝑣)

• New weights: 𝒘𝑷 𝑢, 𝑣 = 𝑢 − 𝑣
2
+ 𝝐𝚫𝑷 𝑢, 𝑣

𝑢 − 𝑣

2
≤ 𝔼𝑷[𝒘𝑷 𝑢, 𝑣] ≤ 1 + 𝑂 𝝐𝒍𝒅 𝑢 − 𝑣

2

• Our algorithm implements Kruskal for weights 𝒘𝑷

𝑢 𝑣

𝚫𝑷 𝑢, 𝑣

“Solve-And-Sketch” Framework

(1 + 𝜖)-MST:

– “Load balancing”: partition the tree into parts of
the same size

– Almost linear time locally: Approximate Nearest
Neighbor data structure *Indyk’99+

– Dependence on dimension d (size of 𝝐-net is

𝑂
𝒅

𝝐

𝒅
)

– Generalizes to bounded doubling dimension

– Implementation in MapReduce

“Solve-And-Sketch” Framework

(1 + 𝜖)-Earth-Mover Distance, Transportation Cost

• No simple “divide-and-conquer” Arora-Mitchell-style
algorithm (unlike for general matching)

• Only recently sequential 1 + 𝜖 -apprxoimation in

𝑂𝜖 𝒏 log𝑂 1 𝒏 time [Sharathkumar, Agarwal ‘12]

Our approach (convex sketching):

• Switch to the flow-based version

• In every cell, send the flow to the closest net-point
until we can connect the net points

“Solve-And-Sketch” Framework

Convex sketching the cost function for 𝝉 net
points

• 𝐹:ℝ𝝉−1 → ℝ = the cost of routing fixed
amounts of flow through the net points

• Function 𝐹’ = 𝐹 + “normalization” is
monotone, convex and Lipschitz, (1 + 𝝐)-
approximates 𝐹

• We can (1 + 𝝐)-sketch it using a lower convex
hull

Thank you! http://grigory.us

• More in the CIS 700 class:
http://grigory.us/big-data-class.html

http://grigory.us/
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html
http://grigory.us/big-data-class.html

