CSCI B609: “Foundations of Data Science”

Lecture 19/20: L_0-sampling, L_1-sparse recovery, Count Sketch

Slides at http://grigory.us/data-science-class.html

Grigory Yaroslavtsev
http://grigory.us
Data Streams

• Stream: *m* elements from universe \([n] = \{1, 2, \ldots, n\}\), e.g.

\[
\langle x_1, x_2, \ldots, x_m \rangle = \langle 5, 8, 1, 1, 1, 4, 3, 5, \ldots, 10 \rangle
\]

• \(f_i\) = frequency of \(i\) in the stream = # of occurrences of value \(i\)

\[
f = \langle f_1, \ldots, f_n \rangle
\]
Frequency Moments

- Define $F_k = \sum_i f_i^k$ for $k \in \{0,1,2, \ldots \}$
 - $F_0 = \# \text{ number of distinct elements}$
 - $F_1 = \# \text{ elements}$
 - $F_2 = \text{“Gini index”, “surprise index”}$
\(\ell_0 \)-sampling

- Maintain \(\widetilde{F}_0 \), and \((1 \pm 0.1)\)-approximation to \(F_0 \).
- Hash items using \(h_j : [n] \to [0, 2^j - 1] \) for \(j \in [\log n] \).
- For each \(j \), maintain:
 \[
 D_j = (1 \pm 0.1)|\{t| h_j(t) = 0\}|
 \]
 \[
 S_j = \sum_{t, h_j(t) = 0} f_t \times t
 \]
 \[
 C_j = \sum_{t, h_j(t) = 0} f_t
 \]
- **Lemma**: At level \(j = 2 + \lceil \log \widetilde{F}_0 \rceil \) there is a unique element in the streams that maps to 0 (with constant probability).
- Uniqueness is verified if \(D_j = 1 \pm 0.1 \). If so, then output \(S_j/C_j \) as the index and \(C_j \) as the count.
Proof of Lemma

• Let $j = 2 + \lceil \log \tilde{F}_0 \rceil$ and note that $2F_0 < 2^j < 12F_0$
• For any i, $\Pr[h_j(i) = 0] = \frac{1}{2^j}$
• Probability there exists a unique i such that $h_j(i) = 0$,
 $$\sum_i \Pr[h_j(i) = 0 \text{ and } \forall k \neq i, h_j(k) \neq 0]$$
 $$= \sum_i \Pr[h_j(i) = 0] \Pr[\forall k \neq i, h_j(k) \neq 0 | h_j(i) = 0]$$
 $$\geq \sum_i \Pr[h_j(i) = 0] \left(1 - \sum_{k \neq i} \Pr[h_j(k) = 0 | h_j(i) = 0] \right)$$
 $$= \sum_i \Pr[h_j(i) = 0] \left(1 - \sum_{k \neq i} \Pr[h_j(k) = 0] \right) \geq \sum_i \frac{1}{2^j} \left(1 - \frac{F_0}{2^j} \right) \geq \frac{1}{24}$$
• Holds even if h_j are only 2-wise independent
Sparse Recovery

• **Goal**: Find g such that $\|f - g\|_1$ is minimized among g's with at most k non-zero entries.

• **Definition**: $Err^k(f) = \min_{g: \|g\|_0 \leq k} \|f - g\|_1$

• **Exercise**: $Err^k(f) = \sum_{i \notin S} |f_i|$ where S are indices of k largest f_i

• Using $O(\epsilon^{-1} k \log n)$ space we can find \tilde{g} such that $\|\tilde{g}\|_0 \leq k$ and $\|\tilde{g} - f\|_1 \leq (1 + \epsilon)Err^k(f)$
Count-Min Revisited

• Use Count-Min with $d = O(\log n)$, $w = 4k/\epsilon$
• For $i \in [n]$, let $\tilde{f}_i = c_{j,h_j(i)}$ for some row $j \in [d]$
• Let $S = \{i_1, ..., i_k\}$ be the indices with max. frequencies. Let A_i be the event there doesn’t exist $t \in S \setminus i$ with $h_j(i) = h_j(t)$
• Then for $i \in [n]$

$$\Pr \left[|f_i - \tilde{f}_i| \geq \frac{\epsilon \text{Err}^k(f)}{k} \right] =$$

$$\Pr[\text{not } A_i] \times \Pr \left[|f_i - \tilde{f}_i| \geq \frac{\epsilon \text{Err}^k(f)}{k} \left| \text{not } A_i \right. \right] +$$

$$\Pr[A_i] \times \Pr \left[|f_i - \tilde{f}_i| \geq \frac{\epsilon \text{Err}^k(f)}{k} \left| A_i \right. \right]$$

$$\leq \Pr[\text{not } A_i] + \Pr \left[|f_i - \tilde{f}_i| \geq \frac{\epsilon \text{Err}^k(f)}{k} \left| A_i \right. \right] \leq \frac{k}{w} + \frac{1}{4} \leq \frac{1}{2}$$

• Because $d = O(\log n)$ w.h.p. all f_i’s approx. up to $\frac{\epsilon \text{Err}^k(f)}{k}$
Sparse Recovery Algorithm

• Use Count-Min with \(d = O(\log n) \), \(w = 4k/\epsilon \)

• Let \(f' = (\tilde{f}_1, \tilde{f}_2, \ldots, \tilde{f}_n) \) be frequency estimates:

\[
|f_i - \tilde{f}_i| \leq \frac{\epsilon \text{Err}^k(f)}{k}
\]

• Let \(\tilde{g} \) be \(f' \) with all but the \(k \)-th largest entries replaced by 0.

• Lemma: \(\| \tilde{g} - f \|_1 \leq (1 + 3 \epsilon)\text{Err}^k(f) \)
\[
\|\tilde{g} - f\|_1 \leq (1 + 3 \varepsilon)Err^k(f)
\]

- Let \(S, T \subseteq [n] \) be indices corresponding to \(k \) largest values of \(f \) and \(f' \).
- For a vector \(x \in \mathbb{R}^n \) and \(I \subseteq [n] \) denote as \(x_I \) the vector formed by zeroing out all entries of \(x \) except for those in \(I \).

\[
\|f - f'_T\|_1 \leq \|f - f_T\|_1 + \|f_T - f'_T\|_1 \\
= \|f\|_1 - \|f_T\|_1 + \|f_T - f'_T\|_1 \\
= \|f\|_1 - \|f'_T\|_1 + (\|f'_T\|_1 - \|f_T\|_1) + \|f_T - f'_T\|_1 \\
\leq \|f\|_1 - \|f'_T\|_1 + 2 \|f_T - f'_T\|_1 \\
\leq \|f\|_1 - \|f_S\|_1 + 2 \|f_T - f'_T\|_1 \\
\leq \|f - f_S\|_1 + (\|f_S\|_1 - \|f'_S\|_1) + 2 \|f_T - f'_T\|_1 \\
\leq \|f - f_S\|_1 + \|f_S - f'_S\|_1 + 2 \|f_T - f'_T\|_1 \\
\leq Err^k(f) + k \varepsilon \frac{Err^k(f)}{k} + 2k \varepsilon \frac{Err^k(f)}{k} \\
\leq (1 + 3 \varepsilon)Err^k(f)
\]
Count Sketch [Charikar, Chen, Farach-Colton]

- In addition to $H_i: [n] \rightarrow [w]$ use random signs $r_i[n] \rightarrow \{-1,1\}$

$$c_{i,j} = \sum_{x: H_i(x) = j} r_i(x)f_x$$

- Estimate:

$$\hat{f}_x = median(r_1(x)c_{1,H_1(x)}, ..., r_d(x)c_{d,H_d(x)})$$

- Parameters: $d = O \left(\log \frac{1}{\delta} \right), w = \frac{3}{\epsilon^2}$

$$\Pr[|\hat{f}_x - f_x| + \epsilon ||f||_2] \geq 1 - \delta$$

- **Lemma:** $E[r_i(x)c_{i,H_i(x)}] = f_x$

- **Lemma:** $\text{Var}[r_i(x)c_{i,H_i(x)}] \leq \frac{F_2}{w}$

- By Chebyshev: $\Pr[|r_i(x)c_{i,H_i(x)} - f_x| \geq \epsilon \sqrt{F_2}] \leq 1/3$

- By Chernoff with $d = O \left(\log \frac{1}{\delta} \right)$ error prob. $1 - \delta$.
Count Sketch Analysis

• Fix i and x. Let $X_y = I[H(x) = H(y)]$:

$$ r(x)C_{H(x)} = \sum_y r(x)r(y)f_yX_y $$

• **Lemma**: $E[r_i(x)c_{i,H_i(x)}] = f_x$

$E[r(x)C_{H(x)}] = E[f_x + \sum_{y \neq x} r(x)r(y)f(y)X_y] = f_x$

• **Lemma**: $\text{Var}[r_i(x)c_{i,H_i(x)}] \leq \frac{F_2}{w}$

$\text{Var}[r(x)C_{H(x)}] \leq E[(\sum_y r(x)r(y)f_yX_y)^2]$

$= E[\sum_y f_y^2X_y^2 + (\sum_{y \neq z} r(y)r(z)f_yf_zX_yX_z)]$

$= \frac{F_2}{w}$