CSCI B609:
“Foundations of Data Science”

Lecture 17/18: Graph Sketching

Slides at http://erigory.us/data-science-class.html

Grigory Yaroslavtsev
http://grigory.us

http://grigory.us/
http://grigory.us/data-science-class.html
http://grigory.us/data-science-class.html
http://grigory.us/data-science-class.html
http://grigory.us/data-science-class.html
http://grigory.us/data-science-class.html

Sketching Graphs?

We know how to sketch vectors: v - Mv
How about sketching graphs?

G(V,E) = A, (adjacency matrix): A; - MAg¢
Sketch columns of A,

n=|V]|,m=|E]

O (poly(log n)) sketch per vertex / O(n) total

— Check connectivity
— Check bipartiteness

As always, space rather than dimension. Why?

Graph Streams

e Semi-streaming model: [Muthukrishnan '05; Feigenbaum,
Kannan, McGregor, Suri, Zhang’05]

— Graph defined by the stream of edges ey, ..., e,
— Space 0(n), edges processed in order
— Connectivity is easy on O0(n) space for insertion-only
* Dynamic graphs:
— Stream of insertion/deletion updates
+e, €., €, (assume sequence is correct)

— Resulting graph has edge ¢; if it wasn’t deleted after
the last insertion

* Linear sketching dynamic graphs:
MAG\e — MAG — MAe

Distributed Computing

* Linear sketches for distributed processing

e S servers with o(m) memory:
—Send m/S edges (E, ..., E5) to each server
— Compute sketches MEy, ..., ME locally
— Send sketches to a central server
— Compute MA; =); ME;

M has to have a small representation (same
issue as in streaming)

Connectivity

» Thm. Connectivity is sketchable in O(n) space
* Framework:

— Take existing connectivity algorithm (Boruvka)
— Sketch A - MAg
— Run Boruvka on MA,

* Important that the sketch is homomorphic
w.r.t the algorithm

Part 1: Parallel Connectivity (Boruvka)

* Repeat until no edges left:
— For each vertex, select any incident edge
— Contract selected edges

* Lemma: process converges in 0 (logn) steps

Part 2: Graph Representation

n
* Foravertexi let a; be a vectorin R()

* Non-zero entries for edges (i, j)
. . 7
—a;li,j]l=1ifj > i
— Cli[i,j] = -1 Ifj <1
* Example:
a,=(1,1,1,1,0,..,0)
a, = (—=1,0,0,0,0,0,1,0,1, ..., 0)

{1,2},{1,3},{1,4},{1,5},{1,6},{1,7},{2,3},{2.4}. {2,5}, ...

6

4

* Lem: Forany S € V supp(Qijesa;) = E(S,V\ S)

Part 3: Ly-Sampling

* There is a distribution over M € R**™ with
d = 0(log? m) such w.p. 9/10 that Va € R™:
Ca — e € supp(a)

[Cormode, Muthukrishnan, Rozenbaum’05; Jowhari,
Saglam, Tardos ‘11]

 Constant probability suffices — still O (log n) Boruvka
iterations

Final Algorithm

* Construct logn f,-samplers for each a;
* Run Boruvka on sketches:

— Use (7 a; to get an edge incident on a node j

—Fori =2tot:
* To get incident edge on a component § € V use:

oY)

JES jES

- e Esupp(Za]) =E(5,V\S)

JES

K-Connectivity

* Graph is k-connected is every cut has size = k

* Thm: There is a O(nk log3 n)-size linear
sketch for k-connectivity

* Generalization: There is an O(nlog® n /€?)-
size linear sketch which allows to approximate
all cuts in a graph up to error (1 + €)

K-connectivity Algorithm

e Algorithm for k-connectivity:
— Let F; be a spanning forest of G(V, E)
—Fori=2,..,k
* Let F; be a spanning forestof G(V,E \ F; \ -**\ F;_1)

* Lem: G(V,F; + ---+ F}) is k-connected iff G(V,E)
IS.

e = Trivial

* & Consideracutin G(V,Z{-‘zl F;)ofsize<k
= 3i": this cut didn’t grow in step (™

= thereisacutin G(V,E) of size < k

= contradiction

K-connectivity Algorithm

e Construct k independent linear sketches
{MA;, M,A; ..., M} Az} for connectivity
* Run k-connectivity algorithm on sketches:
— Use M, A to get a spanning forest F; of G
—Use MyAg — My Ap, = My(Ag—p,) to find F,
—Use M3Ag — M3Ap, — M3Ap, = M3(Ag-F,-F,) tO
find F3

Bipartiteness

e Reduction: Given G define G’ where vertices
v = (vl; v2); edges (u, U) - (ul' UZ) & (UZJ vl)

22 % AVE

* Lem: # connected components doubles iff the graph
is bipartite.

» Thm: O(nlog? n)-size linear sketch for k-
connectivity (sketch G’ (implicitly).)

Minimum Spanning Tree

* Ifn; = # connected components in a subgraph induced by
edges of weight < (1 + €)*:

w(MST) <71 — (1 + €)" + z Am; < (1 + €)w(MST)
. 1=0..r-1

where 4; = (1 + €)'*1—(1 + €)*
e cc(G) = #connected components of G
 Round weights up to the nearest power of 1 + €
* (; = subgraph with edges of weight < (1 + €)
* Edges taken by the Kruskal’s algorithm:

— n—cc(Gy) edges of weight 1

— cc(Gy) — cc(G,) edges of weight (1 + €)

— ¢cc(G;_1) — cc(G;) edges of weight (1 + €)'

Minimum Spanning Tree

* Letr =logi, W where W = max edge weight

* Overall weight:
n —cc(Gy) + Z (1 + €)' (cc(Gi—q) — cc(Gy))

—n—(1+e) + 2((1 + o) —(1 +)) cc(Gy)

 Thm: (1 + 6)-approx. MST weight can be
computed with O(n) linear sketch for W =

poly(n)

MST: Single Linkage Clustering

e [Zahn’71] Clustering via MST (Single-linkage):
k clusters: remove k — 1 longest edges from MST

e Maximizes minimum intercluster distance

quality of this

partitioning is O
min{a,b,c} O

[Kleinberg, Tardos]

Cut Sparsification

 Two problems:
— Approximating Min-Cut in the graph (up to 1 + €)
— Preserving all cuts in the graph (upto 1 + €)
* General cut sparsification framework:
— Sample each edge e with probability p,
— Assign sampled edges weights 1/p,

* Expected weight of each cut is preserved, but
too many cuts — can’t take union bound

Cut Sparsification

For an edge e let A, = weight of the minimum
cut that contains e

A = size of the Min-Cut in G

Thm [Fung et al.]: If G is an undirected

: : . (Clog?n
weighted graph the if p, = mln(oz 1)
then the cut sparsification alg. Preserves
weights of all cuts up to (1 £ €)

Clogn
Ae2 '’

Thm [Karger]: p, = min(1) preserves

Min-Cut up to (1 + ¢€)

Minimum Cut

Algorithm:
* Fori = {0,1,...,2logn}:
— Let G; be the subgraph of G where each edge is
sampled with probability 1/2*

— LetH; = F4, ..., F;, where k = 0 (eiz - logn) and F; are
forests constructed by the k-connectivity alg.

* Return Zj/l(Hj) where j = min{i : A(H;) < k}

nlog*n

Space: 0 () , works for dynamic graph streams

€2

Minimum Cut: Analysis

Key property: If G; has < k edges across a cut
then H; contains all such edges

= Jogmax 1.2

6 logn : :
5 ,1) = min cut in G;
Ae?

is approximating min-cutin G up to (1 £ €)
i = 1": By Chernoff bound # edges in G;+ that
crosses min-cut in G is O (Eizlogn) < k w.h.p.

i <i* = pe = min

Cut Sparsification

Algorithm:
* Fori = {0,1,...,2logn}:
— Let G; be the subgraph of G where each edge is sampled with
probability 1/2*
1

— LetH; = F4, ..., F;, where k = O (6—2 - log? n) and F; are forests
constructed by the k-connectivity alg.

For each edge e let j, = min {i: 1, (H;) < k}.
If e € H;, then add e to the sparsifier with weight e

nlog®n

Space: 0 (—
Analysis similar to the Min-Cut using [Fung et al.]

) , works for dynamic graph streams

