CSCI B609: "Foundations of Data Science"

Lecture 13/14: Gradient Descent, Boosting and Learning from Experts

Slides at http://grigory.us/data-science-class.html

Grigory Yaroslavtsev

http://grigory.us

Constrained Convex Optimization

Non-convex optimization is NP-hard:

$$\sum_{i} x_i^2 (1 - x_i)^2 = 0 \Leftrightarrow \forall i: x_i \in \{0, 1\}$$

- Knapsack:
 - Minimize $\sum_i c_i x_i$
 - Subject to: $\sum_i w_i x_i$ ≤ W
- Convex optimization can often be solved by ellipsoid algorithm in poly(n) time, but too slow

Convex multivariate functions

- Convexity:
 - $\forall x, y \in \mathbb{R}^n : f(x) \ge f(y) + (x y)\nabla f(y)$
 - $\forall x, y \in \mathbb{R}^n, 0 \le \lambda \le 1$: $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$
- If higher derivatives exist:

$$f(x) = f(y) + \nabla f(y) \cdot (x - y) + (x - y)^T \nabla^2 f(x)(x - y) + \cdots$$

- $\nabla^2 f(x)_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$ is the Hessian matrix
- f is convex iff it's Hessian is positive semidefinite, $y^T \nabla^2 f y \ge 0$ for all y.

Examples of convex functions

• ℓ_p -norm is convex for $1 \le p \le \infty$:

$$\begin{aligned} \left| \left| \lambda x + (1 - \lambda)y \right| \right|_p &\leq \left| \left| \lambda x \right| \right|_p + \left| \left| (1 - \lambda)y \right| \right|_p \\ &= \lambda \left| \left| x \right| \right|_p + (1 - \lambda) \left| \left| y \right| \right|_p \end{aligned}$$

- $f(x) = \log(e^{x_1} + e^{x_2} + \dots + e^{x_n})$ $\max(x_1, \dots, x_n) \le f(x) \le \max(x_1, \dots, x_n) + \log n$
- $f(x) = x^T A x$ where A is a p.s.d. matrix, $\nabla^2 f = A$
- Examples of constrained convex optimization:
 - (Linear equations with p.s.d. constraints):

minimize:
$$\frac{1}{2}x^TAx - b^Tx$$
 (solution satisfies $Ax = b$)

- (Least squares regression):

Minimize:
$$||Ax - b||_2^2 = x^T A^T A x - 2 (Ax)^T b + b^T b$$

Constrained Convex Optimization

• General formulation for convex f and a convex set K: minimize: f(x) subject to: $x \in K$

- Example (SVMs):
 - Data: $X_1, ..., X_N \in \mathbb{R}^n$ labeled by $y_1, ..., y_N \in \{-1,1\}$ (spam / non-spam)
 - Find a linear model:

$$W \cdot X_i \ge 1 \Rightarrow X_i$$
 is spam $W \cdot X_i \le -1 \Rightarrow X_i$ is non-spam $\forall i \colon 1 - y_i W X_i \le 0$

More robust version:

minimize:
$$\sum_{i} Loss(1 - W(y_i X_i)) + \lambda ||W||_2$$

- E.g. hinge loss Loss(t)=max(0,t)
- Another regularizer: $\lambda ||W||_{1}$ (favors sparse solutions)

Gradient Descent for Constrained Convex Optimization

- (Projection): $x \notin K \to y \in K$ $y = \operatorname{argmin}_{z \in K} ||z - x||_2$
- Easy to compute for $\left|\left|\cdot\right|\right|_2^2$: $y = x/\left|\left|x\right|\right|_2^2$
- Let $||\nabla f(x)||_2 \le G$, $\max_{x,y \in K} (||x-y||_2) \le D$.
- Let $T = \frac{4D^2G^2}{\epsilon^2}$
- Gradient descent (gradient + projection oracles):
 - Let $\eta = D/G\sqrt{T}$
 - Repeat for i = 0, ..., T:
 - $y^{(i+1)} = x^{(i)} \eta \nabla f(x^{(i)})$
 - $x^{(i+1)}$ = projection of $y^{(i+1)}$ on K
 - Output $z = \frac{1}{T} \sum_{i} x^{(i)}$

Gradient Descent for Constrained Convex Optimization

•
$$||x^{(i+1)} - x^*||_2^2 \le ||y^{(i+1)} - x^*||_2^2$$

= $||x^{(i)} - x^* - \eta \nabla f(x^{(i)})||_2^2$
= $||x^{(i)} - x^*||_2^2 + \eta^2 ||\nabla f(x^{(i)})||_2^2 - 2\eta \nabla f(x^{(i)}) \cdot (x^{(i)} - x^*)$

• Using definition of *G*:

$$\nabla f(x^{(i)}) \cdot (x^{(i)} - x^*) \le \frac{1}{2\eta} \left(\left| \left| x^{(i)} - x^* \right| \right|_2^2 - \left| \left| x^{(i+1)} - x^* \right| \right|_2^2 \right) + \frac{\eta}{2} G^2$$

•
$$f(x^{(i)}) - f(x^*) \le \frac{1}{2\eta} \left(\left| \left| x^{(i)} - x^* \right| \right|_2^2 - \left| \left| x^{(i+1)} - x^* \right| \right|_2^2 \right) + \frac{\eta}{2} G^2$$

• Sum over i = 1, ..., T:

$$\sum_{i=1}^{T} f(x^{(i)}) - f(x^*) \le \frac{1}{2\eta} \left(\left| \left| x^{(0)} - x^* \right| \right|_2^2 - \left| \left| x^{(T)} - x^* \right| \right|_2^2 \right) + \frac{T\eta}{2} G^2$$

Gradient Descent for Constrained Convex Optimization

•
$$\sum_{i=1}^{T} f(x^{(i)}) - f(x^*) \le \frac{1}{2\eta} \left(\left| \left| x^{(0)} - x^* \right| \right|_2^2 - \left| \left| x^{(T)} - x^* \right| \right|_2^2 \right) + \frac{T\eta}{2} G^2$$

•
$$f\left(\frac{1}{T}\sum_{i}x^{(i)}\right) \leq \frac{1}{T}\sum_{i}f\left(x^{(i)}\right)$$
:

$$f\left(\frac{1}{T}\sum_{i}x^{(i)}\right) - f(x^*) \le \frac{D^2}{2\eta T} + \frac{\eta}{2}G^2$$

• Set
$$\eta = \frac{D}{G\sqrt{T}} \Rightarrow \text{RHS} \le \frac{DG}{\sqrt{T}} \le \epsilon$$

Online Gradient Descent

- Gradient descent works in a more general case:
- $f \rightarrow$ sequence of convex functions $f_1, f_2 \dots, f_T$
- At step i need to output $x^{(i)} \in K$
- Let x^* be the minimizer of $\sum_i f_i(w)$
- Minimize regret:

$$\sum_{i} f_i(x^{(i)}) - f_i(x^*)$$

Same analysis as before works in online case.

Stochastic Gradient Descent

- (Expected gradient oracle): returns g such that $\mathbb{E}_g[g] = \nabla f(x)$.
- Example: for SVM pick randomly one term from the loss function.
- Let g_i be the gradient returned at step i
- Let $f_i = g_i^T x$ be the function used in the i-th step of OGD
- Let $z = \frac{1}{T} \sum_{i} x^{(i)}$ and x^* be the minimizer of f.

Stochastic Gradient Descent

- Thm. $\mathbb{E}[f(z)] \leq f(x^*) + \frac{DG}{\sqrt{T}}$ where G is an upper bound of any gradient output by oracle.
- $f(z) f(x^*) \le \frac{1}{T} \sum_i (f(x^{(i)}) f(x^*))$ (convexity) $\leq \frac{1}{T} \sum \nabla f(x^{(i)}) (x^{(i)} - x^*)$ $= \frac{1}{\tau} \sum_{i} \mathbb{E} \left[g_i^T (x^{(i)} - x^*) \right]$ (grad. oracle) $= \frac{1}{T} \sum_{i} \mathbb{E}[f_i(x^{(i)}) - f_i(x^*)]$ $= \frac{1}{T} \mathbb{E}\left[\sum_{i} f_i(x^{(i)}) - f_i(x^*)\right]$
- $\mathbb{E}[]$ = regret of OGD , always $\leq \epsilon$

VC-dim of combinations of concepts

- For k concepts h_1, \ldots, h_k + a Boolean function f: $comb_f(h_1, \ldots, h_k) = \{x \in X : f(h_1(x), \ldots, h_k(x)) = 1\}$
- Ex: H = lin. separators, f = AND / f = Majority
- For a concept class H + a Boolean function f: $COMB_{f,k}(H) = \{comb_f(h_1, ..., h_k): h_i \in H\}$
- **Lem**. If VC-dim(H) = d then for any f:

$$VC$$
-dim $\left(COMB_{f,k}(H)\right) \le O(kd \log(kd))$

VC-dim of combinations of concepts

• Lem. If VC-dim(H) = d then for any f:

$$VC$$
-dim $\left(COMB_{f,k}(H)\right) \le O(kd \log(kd))$

- Let n = VC-dim $\left(COMB_{f,k}(H)\right)$
- $\Rightarrow \exists \operatorname{set} S \operatorname{of} n \operatorname{points} \operatorname{shattered} \operatorname{by} COMB_{f,k}(H)$
- Sauer's lemma $\Rightarrow \leq n^d$ ways of labeling S by H
- Each labeling in $COMB_{f,k}(H)$ determined by k labelings of S by $H \Rightarrow \leq (n^d)^k = n^{kd}$ labelings
- $2^n \le n^{kd} \Rightarrow n \le kd \log n \Rightarrow n \le 2kd \log kd$

Back to the batch setting

- Classification problem
 - Instance space $X: \{0,1\}^d$ or \mathbb{R}^d (feature vectors)
 - Classification: come up with a mapping $X \to \{0,1\}$
- Formalization:
 - Assume there is a probability distribution D over X
 - $-c^*$ = "target concept" (set $c^* \subseteq X$ of positive instances)
 - Given labeled i.i.d. samples from D produce $h \subseteq X$
 - **Goal:** have \boldsymbol{h} agree with \boldsymbol{c}^* over distribution D
 - Minimize: $err_D(\mathbf{h}) = \Pr_D[\mathbf{h} \Delta \mathbf{c}^*]$
 - $-err_D(\mathbf{h})$ = "true" or "generalization" error

Boosting

- Strong learner: succeeds with prob. $\geq 1 \epsilon$
- Weak learner: succeeds with prob. $\geq \frac{1}{2} + \gamma$
- Boosting (informal): weak learner that works under any distribution ⇒ strong learner
- Idea: run weak leaner A on sample S under reweightings focusing on misclassified examples

Boosting (cont.)

- H = class of hypothesis produced by A
- Apply majority rule to $h_1, ..., h_{t_0} \sim H$:

$$VC$$
-dim $\leq O(t_0VC$ -dim $(H) \log(t_0VC$ -dim $(H)))$

Algorithm:

- Given $S = (x_1, ..., x_n)$ set $w_i = 1$ in $\mathbf{w} = (w_1, ..., w_n)$
- For $t = 1, ..., t_0$ do:
 - Call weak learner on $(S, \mathbf{w}) \Rightarrow$ hypothesis h_t
 - For misclassified x_i multiply w_i by $\alpha = (\frac{1}{2} + \gamma)/(\frac{1}{2} \gamma)$
- Output: MAJ $(h_1, ..., h_{t_0})$

Boosting: analysis

• **Def (\gamma-weak learner on sample):** For labeled examples x_i weighted by w_i with weight of correct

$$\geq \left(\frac{1}{2} + \gamma\right) \sum_{i=1}^{n} w_i$$

• Thm. If A is γ -weak learner on $S \Rightarrow$

for
$$t_0 = O\left(\frac{1}{\gamma^2} \log n\right)$$
 boosting achieves 0 error on S .

- **Proof.** m = # mistakes of the final classifier
 - Each was misclassified $\geq \frac{t_0}{2}$ times \Rightarrow weight $\geq \alpha^{t_0/2}$
 - Total weight $\geq m\alpha^{t_0/2}$
 - Total weight at t = W(t)

$$-W(t+1) \le \left(\alpha\left(\frac{1}{2} - \gamma\right) + \left(\frac{1}{2} + \gamma\right)\right)W(t) = (1+2\gamma)W(t)$$

Boosting: analysis (cont.)

- $W(0) = n \Rightarrow W(t_0) \le n(1 + 2\gamma)^{t_0}$
- $m\alpha^{t_0/2} \leq W(t_0) \leq n(1+2\gamma)^{t_0}$
- $\alpha = (\frac{1}{2} + \gamma)/(\frac{1}{2} \gamma) = (1 + 2\gamma)/(1 2\gamma)$
- $m \le n(1-2\gamma)^{t_0/2} (1+2\gamma)^{t_0/2} = n(1-4\gamma^2)^{t_0/2}$
- $1 x \le e^{-x} \Rightarrow m \le ne^{-2\gamma^2 t_0} \Rightarrow t_0 = O\left(\frac{1}{\gamma^2} \log n\right)$

Comments:

- Applies even if the weak learners are adversarial
- VC-dim bounds $\Rightarrow n = \tilde{O}\left(\frac{1}{\epsilon} \frac{VC \dim(H)}{\gamma^2}\right)$