CSCI B609:
“Foundations of Data Science”

Lecture 13/14: Gradient Descent,

Boosting and Learning from Experts
Slides at http://grigory.us/data-science-class.html

Grigory Yaroslavtsev
http://grigory.us

http://grigory.us/
http://grigory.us/data-science-class.html
http://grigory.us/data-science-class.html
http://grigory.us/data-science-class.html
http://grigory.us/data-science-class.html
http://grigory.us/data-science-class.html

Constrained Convex Optimization

* Non-convex optimization is NP-hard:

me —x)? =0 o Vi: x; € {0,1)
i
* Knapsack:
— Minimize);; ¢;x;
— Subject to: Y, wix; < W
* Convex optimization can often be solved by
ellipsoid algorithm in poly(n) time, but too slow

Convex multivariate functions

Convexity:

vx,y € R": f(x) = f(y) + (x —y)VI(y)
Vx,y ER", 0<A<1:

fAx+ (A =Dy) =Af () + (A =-Df)
If higher derivatives exist:
f)=f@)+Vf(y) (x—y)
+ =V —y) + -
62

Vof(x)ij = axiaij
f is convex iff it’s Hessian is positive semidefinite,
yIV74fy > 0 for all y.

is the Hessian matrix

Examples of convex functions

{-norm is convex for 1 < p < oo:
12 + (1 = Dyl) < [1axl| | +[I@ = Dyl|

= Il + (1 - Dl

f(x) =log(e*r + e*2 4 .- 1)
max(xq, ..., x,) < f(x) < max(xq, ..., x,) +logn
f(x) = x"Ax where A is a p.s.d. matrix, V2f = A
Examples of constrained convex optimization:
— (Linear equations with p.s.d. constraints):

minimize: %xTAx — bTx (solution satisfies Ax = b)
— (Least squares regression):

L 2 TAT T T
Minimize: ||Ax — b||2 =xA'Ax —2(Ax)'b+b'b

Constrained Convex Optimization

* General formulation for convex f and a convex set K:
minimize: f(x) subjectto:x €K
* Example (SVMs):

— Data: X4, ..., Xy € R™ labeled by y4, ..., yy € {—1,1} (spam
/ non-spam)

— Find a linear model:
W-X;, =2 1= X;isspam
W-X; <—1= X;isnon-spam
Vi:l —y;WX; <0
* More robust version:

minimize: z Loss(1 — W(y;X;)) + AHW”Z
i

— E.g. hinge loss Loss(t)=max(0,t)
— Another regularizer: /1| |W | |1 (favors sparse solutions)

Gradient Descent for Constrained

Convex Optimization
(Projection): x € K >y €K

y = argminzeKHZ — X |2
Easy to compute for ||-|E: y = x/||x| z
Let ||\7f(x)||2 < G,g/ag{(“x — | 2) <D
let T = 4D62262
Gradient descent (gradient + projection oracles):
— Letn =D/GNT

— Repeatfori =0,...,T:
« x+D = projection of y(*1) on K

— Output z = %Zix(i)

Gradient Descent for Constrained
Convex Optimization

. “x(i+1) _ XHZ < “y(i+1) _ x”z
2 2

= |[x® — x* —nvf (x(”)”i

=[x = [, + 02 lr GO, = 207 (9 - (20 =)
e Using definition of G:

. . 1 .
VF(x®) - (x® —x*) < Z—(HX(‘) —x* “x(”l) 2) + Z G2
)= 1o = 5 ([l - o 1)+
. Sum overi =1,..,T:
. 2 2 Tn
(D) — * _ 0) — x|l — ||x(T) — 5% 2
;f(x) f(x)szn(“x x|, “x X 2) > —G

Gradient Descent for Constrained
Convex Optimization

* B f(x) - f(x7) <
1 2
el

y f(%zix(i)) = %Zif(x(i)):
2

1 ;) D n
f(fix())‘ﬂ“%ﬂ i

l

*2)+T—"G2
2 2

’SEtT]_T_ﬁRHS TG

Online Gradient Descent

Gradient descent works in a more general
case:

f — sequence of convex functions f1, f5 ..., fT

At step i need to output x(V € K
Let x* be the minimizer of };; f; (w)
Minimize regret:

> Fi(x®) = fi(x)

Same analysis as before works in online case.

Stochastic Gradient Descent

(Expe_cted gradient oracle): returns g such that
Eqylgl = Vf(x).

Example: for SVM pick randomly one term
from the loss function.

Let g; be the gradient returned at step i

Let f; = g; x be the function used in the i-th
step of OGD

Let z = %Zix(i) and x™ be the minimizer of f.

Stochastic Gradient Descent

« Thm.E[f(2)] < f(x™) + % where G is an upper bound of
any gradient output by oracle.

* f(2) —f(x7) < %Zi(f(x(i)) — f(x™)) (convexity)
1 . .
D o
= 1Zi E [giT(X(i) — x™)] (grad. oracle)

T
1 .
=2) E[fi(x®) = fi(x")

1 l .
= 7B fiGD) —fix)]

 [E[] =regret of OGD, always < €

VC-dim of combinations of concepts

* For k concepts h4, ..., hy + a Boolean function f:
combg(hy, ... hy) = {x € X: f(hy(x), ... hix(x)) = 1}

* Ex: H =lin. separators, f = AND / f = Majority

* For a concept class H + a Boolean function f:
COMB¢ j (H) = {combs(hy, ... hy):h; € H}

* Lem. If V'C-dim(H)= d then for any f:
VC-dim(COMB 1 (H)) < 0(kd log(kd))

VC-dim of combinations of concepts

Lem. If VC-dim(H)= d then for any f:
VC-dim(COMB . (H)) < 0 (kd log(kd))

Let n = VC-dim (COMBf,k(H))
= 3 set S of n points shattered by COM B¢ . (H)

Sauer’s lemma = < n% ways of labeling S by H

Each labeling in COM B¢ (H) determined by k
labelings of S by H = < (n®)* = n¥? |abelings

2" < nk? > n < kdlogn = n < 2kdlogkd

Back to the batch setting

e Classification problem
— Instance space X: {0,1}% or R? (feature vectors)
— Classification: come up with a mapping X — {0,1}
* Formalization:
— Assume there is a probability distribution D over X
— ¢*= “target concept” (set ¢* € X of positive instances)
— Given labeled i.i.d. samples from D produce h € X
— Goal: have h agree with ¢* over distribution D

— Minimize: errp(h) = Il’)r[h A c*]

—errp(h) = “true” or “generalization” error

Boosting

Strong learner: succeeds with prob. =1 — €

. 1
Weak learner: succeeds with prob. > >ty
Boosting (informal): weak learner that works
under any distribution = strong learner

Idea: run weak leaner A on sample S under
reweightings focusing on misclassified examples

Boosting (cont.)

 H =class of hypothesis produced by A
* Apply majority rule to hy, ..., hyy ~ H:
VC-dim < O(tyVC-dim(H) log(tyVC-dim(H)))

Algorithm:
 GivenS = (X1, ..., xp) setw; =1linw = (wq, ..., wy,)
* Fort =1, ..., ¢ty do:

— Call weak learner on (S, w) = hypothesis h;

— For misclassified x; multiply w; by a = (% +)/)/(% —7)
* Output: MAJ(hy, ..., hyy)

Boosting: analysis

* Def (y-weak learner on sample): For labeled examples x;
weighted by w; with weight of correct

1
> (3 +7) Ziaw,
* Thm. If Aisy-weak learneron$§ =

fortg =0 (y—lz log n) boosting achieves 0 error on §.

* Proof. m = # mistakes of the final classifier

. - to .. .
— Each was misclassified > ;0 times = weight > f0/?

— Total weight > mato/?
— Total weight at t = W(t)

Wt +1) < (a E-y)+(i+ y)) W) = (1 + 2)W(0)

Boosting: analysis (cont.)

* W(0) =n=W(ty) <n(l+2y)
« mal/2 < W(ty) <n(1+2y)t

ca=(Z+V/G-y)=1+29)/(1—-2y)
e m < n(l—2y)0/2 (1+2y)t0/2 =n(1 - 4y?)te/?

_ 94,2 1
e l—x<e*=> m<ne¥t=t,=0(=logn
»yZ

Comments:
— Applies even if the weak learners are adversarial

— VC-dim bounds = n = 0 e Vc_iizm(H))

