CSCI B609:

 "Foundations of Data Science"

 "Foundations of Data Science"}

Lecture 1 \& 2: Intro

Slides at http://grigory.us/data-science-class.html

Grigory Yaroslavtsev
 http://grigory.us

Disclaimers

- A lot of Math!

Disclaimers

- No programming!

Class info

- Advanced graduate class, not an intro-level class
- Primary audience: Ph.D. students
- MW 16:00-17:15, Ballantine 310
- Grading:
- Class attendance/participation (20\%)
- Homework assignments (40\%)
- Only accepted via e-mail in LaTeX-generated PDF format
- No handwritten homework accepted
- Project (40\%)
- Text: Blum-Hopcroft-Kannan, "Foundations of Data Science"
- http://grigory.us/files/bhk-book.pdf
- 06/09/16 version
- Office hours announced later
- Slides will be posted

Plan for today

- Lecture: first 45 minutes:
- Basic probability
- Inequalities for random variables
- Concentration bounds
- Quiz: last 20 minutes:
- Tests background knowledge
- Graded but doesn't count towards final grade
- Quiz too hard => take intro-level classes first

Expectation

- $\boldsymbol{X}=$ random variable with values $x_{1}, \ldots, x_{n}, \ldots$
- If X is continuous then all sums replaced with integrals
- Expectation $\mathbb{E}[\boldsymbol{X}]$

$$
\mathbb{E}[\boldsymbol{X}]=\sum_{i=1}^{\infty} \mathrm{x}_{\mathrm{i}} \cdot \operatorname{Pr}\left[\boldsymbol{X}=x_{i}\right]
$$

- Properties (linearity):

$$
\begin{gathered}
\mathbb{E}[c \boldsymbol{X}]=c \mathbb{E}[\boldsymbol{X}] \\
\mathbb{E}[\boldsymbol{X}+\boldsymbol{Y}]=\mathbb{E}[\boldsymbol{X}]+\mathbb{E}[\boldsymbol{Y}]
\end{gathered}
$$

- Useful fact: if all $x_{i} \geq 0$ and integer then

$$
\mathbb{E}[\boldsymbol{X}]=\sum_{i=1}^{\infty} \operatorname{Pr}[\boldsymbol{X} \geq i]
$$

Expectation

- Example: dice has values $1,2, \ldots, 6$ with probability 1/6

\mathbb{E} [Value]=

$$
\begin{aligned}
& \sum_{i=1}^{6} i \cdot \operatorname{Pr}[\text { Value }=i] \\
& =\frac{1}{6} \sum_{i=1}^{6} i=\frac{21}{6}=3.5
\end{aligned}
$$

Variance

- Variance $\operatorname{Var}[\boldsymbol{X}]=\mathbb{E}\left[(\mathbf{X}-\mathbb{E}[\mathbf{X}])^{2}\right]$

$$
\begin{gathered}
\operatorname{Var}[\mathbf{X}]=\mathbb{E}\left[(\mathbf{X}-\mathbb{E}[\mathbf{X}])^{2}\right]= \\
=\mathbb{E}\left[\boldsymbol{X}^{2}-2 \mathbf{X} \cdot \mathbb{E}[\mathbf{X}]+\mathbb{E}[\mathbf{X}]^{2}\right] \\
=\mathbb{E}\left[\boldsymbol{X}^{2}\right]-2 \mathbb{E}[\mathbf{X} \cdot \mathbb{E}[\mathbf{X}]]+\mathbb{E}\left[\mathbb{E}[\mathbf{X}]^{2}\right]
\end{gathered}
$$

- $\mathbb{E}[X]$ is some fixed value (a constant)
- $2 \mathbb{E}[\mathbf{X} \cdot \mathbb{E}[\mathrm{X}]]=2 \mathbb{E}[\mathrm{X}] \cdot \mathbb{E}[\mathrm{X}]=2 \mathbb{E}^{2}[\boldsymbol{X}]$
- $\mathbb{E}\left[\mathbb{E}[X]^{2}\right]=\mathbb{E}^{2}[\mathrm{X}]$
- $\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-2 \mathbb{E}^{2}[X]+\mathbb{E}^{2}[\mathrm{X}]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}^{2}[\mathrm{X}]$
- Corollary: $\operatorname{Var}[c \boldsymbol{X}]=c^{2} \operatorname{Var}[X]$

Variance

- Example (Variance of a fair dice):

$$
\mathbb{E}[\text { Value }]=3.5
$$

$\operatorname{Var}[$ Value $]=\mathbb{E}\left[(\text { Value }-\mathbb{E}[\text { Value }])^{2}\right]$
$=\mathbb{E}\left[(\text { Value }-3.5)^{2}\right]$
$=\sum_{i=1}^{6}(i-3.5)^{2} \cdot \operatorname{Pr}[$ Value $=i]$
$=\frac{1}{6} \sum_{i=1}^{6}(i-3.5)^{2}$
$=\frac{1}{6}\left[(1-3.5)^{2}+(2-3.5)^{2}+(3-3.5)^{2}\right.$
$\left.+(4-3.5)^{2}+(5-3.5)^{2}+(6-3.5)^{2}\right]$
$=\frac{1}{6}[6.25+2.25+0.25+0.25+2.25+6.25]$
$=\frac{8.75}{3} \approx 2.917$

Independence

- Two random variables \boldsymbol{X} and \boldsymbol{Y} are independent if and only if (iff) for every x, y :

$$
\operatorname{Pr}[\boldsymbol{X}=x, \boldsymbol{Y}=y]=\operatorname{Pr}[\boldsymbol{X}=x] \cdot \operatorname{Pr}[\boldsymbol{Y}=y]
$$

- Variables $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$ are mutually independent iff

$$
\operatorname{Pr}\left[\boldsymbol{X}_{\mathbf{1}}=x_{1}, \ldots, \boldsymbol{X}_{n}=x_{n}\right]=\prod_{i=1}^{n} \operatorname{Pr}\left[\boldsymbol{X}_{\boldsymbol{i}}=x_{i}\right]
$$

- Variables $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$ are pairwise independent iff for all pairs i,j

$$
\operatorname{Pr}\left[\boldsymbol{X}_{\boldsymbol{i}}=x_{i}, \boldsymbol{X}_{j}=x_{j}\right]=\operatorname{Pr}\left[\boldsymbol{X}_{\boldsymbol{i}}=x_{i}\right] \operatorname{Pr}\left[\boldsymbol{X}_{\boldsymbol{j}}=x_{j}\right]
$$

Independence: Example

- Ratings of mortgage securities
- AAA $=1 \%$ probability of default (over X years)
$-A A=2 \%$ probability of default
$-A=5 \%$ probability of default
$-B=10 \%$ probability of default
- C = 50\% probability of default
- D = 100\% probability of default
- You are a portfolio holder with 1000 AAA securities?
- Are they all independent?
- Is probability of all defaulting $(0.01)^{1000}=10^{-2000}$?

Conditional Probabilities

- For two events E_{1} and E_{2} :

$$
\operatorname{Pr}\left[E_{2} \mid E_{1}\right]=\frac{\operatorname{Pr}\left[E_{1} \text { and } E_{2}\right]}{\operatorname{Pr}\left[E_{1}\right]}
$$

- If two random variables (r.vs) are independent $\operatorname{Pr}\left[X_{2}=x_{2} \mid X_{1}=x_{1}\right]$
$=\frac{\operatorname{Pr}\left[X_{1}=x_{1} \text { and } X_{2}=x_{2}\right]}{\operatorname{Pr}\left[X_{1}=x_{1}\right]}$ (by definition)
$=\frac{\operatorname{Pr}\left[X_{1}=x_{1}\right] \operatorname{Pr}\left[X_{2}=x_{2}\right]}{\operatorname{Pr}\left[X_{1}=x_{1}\right]}$ (by independence)
$=\operatorname{Pr}\left[X_{2}=x_{2}\right]$

Union Bound

For any events E_{1}, \ldots, E_{k} :

$$
\begin{gathered}
\operatorname{Pr}\left[E_{1} \text { or } E_{2} \text { or } \ldots \text { or } E_{k}\right] \\
\leq \operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]+\ldots+\operatorname{Pr}\left[E_{k}\right]
\end{gathered}
$$

- Pro: Works even for dependent variables!
- Con: Sometimes very loose, especially for mutually independent events
$\operatorname{Pr}\left[E_{1}\right.$ or E_{2} or \ldots or $\left.E_{k}\right]=1-\prod_{i=1}^{k}\left(1-\operatorname{Pr}\left[E_{i}\right]\right)$

Independence and Linearity of
 Expectation/Variance

- Linearity of expectation (even for dependent variables!):

$$
\mathbb{E}\left[\sum_{i=1}^{k} X_{i}\right]=\sum_{i=1}^{k} \mathbb{E}\left[X_{i}\right]
$$

- Linearity of variance (only for pairwise independent variables!)

$$
\operatorname{Var}\left[\sum_{i=1}^{k} X_{i}\right]=\sum_{i=1}^{k} \operatorname{Var}\left[X_{i}\right]
$$

Part 2: Inequalities

- Markov inequality
- Chebyshev inequality
- Chernoff bound

Markov's Inequality

- If X is a non-negative r.v. then for every $c>0$:

$$
\operatorname{Pr}[\boldsymbol{X} \geq c \mathbb{E}[\boldsymbol{X}]] \leq \frac{1}{c}
$$

- Proof

$$
\begin{array}{cr}
\mathbb{E}[\boldsymbol{X}]=\sum_{i} i \cdot \operatorname{Pr}[\boldsymbol{X}=i] & \text { (by definition) } \\
\geq \sum_{i=c \mathbb{E}[\boldsymbol{X}]}^{\infty} i \cdot \operatorname{Pr}[\boldsymbol{X}=i] & \text { (pick only some i's) } \\
\geq \sum_{i=c \mathbb{E}[\boldsymbol{X}]} c \mathbb{E}[\boldsymbol{X}] \cdot \operatorname{Pr}[\boldsymbol{X}=i] & (i \geq c \mathbb{E}[\boldsymbol{X}]) \\
=c \mathbb{E}[\boldsymbol{X}] \sum_{i=c \mathbb{E}[\boldsymbol{X}]}^{\infty} \operatorname{Pr}[\boldsymbol{X}=i] & \text { (by linearity) } \\
=c \mathbb{E}[\boldsymbol{X}] \operatorname{Pr}[\boldsymbol{X} \geq c \mathbb{E}[\boldsymbol{X}]] & \text { (same as above) } \\
\Rightarrow \operatorname{Pr}[\boldsymbol{X} \geq c \mathbb{E}[\boldsymbol{X}]] \leq \frac{1}{c}
\end{array}
$$

Markov’s Inequality

- For every $c>0: \operatorname{Pr}[\boldsymbol{X} \geq c \mathbb{E}[\boldsymbol{X}]] \leq \frac{1}{c}$
- Corollary ($\mathrm{c}^{\prime}=c \mathbb{E}[\boldsymbol{X}]$):

For every $c^{\prime}>0: \operatorname{Pr}\left[\boldsymbol{X} \geq c^{\prime}\right] \leq \frac{\mathbb{E}[\boldsymbol{X}]}{c^{\prime}}$

- Pro: always works!
- Cons:
- Not very precise
- Doesn't work for the lower tail: $\operatorname{Pr}[\boldsymbol{X} \leq c \mathbb{E}[\boldsymbol{X}]]$

Markov Inequality: Example

Markov 1: For every $c>0$:

$$
\operatorname{Pr}[\boldsymbol{X} \geq c \mathbb{E}[\boldsymbol{X}]] \leq \frac{1}{c}
$$

- Example:

$$
\begin{gathered}
\operatorname{Pr}[\text { Value } \geq 1.5 \cdot \mathbb{E}[\text { Value }]]=\operatorname{Pr}[\text { Value } \geq 1.5 \cdot 3.5]= \\
\operatorname{Pr}[\text { Value } \geq 5.25] \leq \frac{1}{1.5}=\frac{2}{3} \\
\operatorname{Pr}[\text { Value } \geq 2 \cdot \mathbb{E}[\text { Value }]]=\operatorname{Pr}[\text { Value } \geq 2 \cdot 3.5] \\
=\operatorname{Pr}[\text { Value } \geq 7] \leq \frac{1}{2}
\end{gathered}
$$

Markov Inequality: Example

Markov 2: For every $c>0$:

$$
\operatorname{Pr}[\boldsymbol{X} \geq c] \leq \frac{\mathbb{E}[\boldsymbol{X}]}{c}
$$

- Example:

$$
\begin{aligned}
& \operatorname{Pr}[\text { Value } \geq 4] \leq \frac{\mathbb{E}[\text { Value }]}{4}=\frac{3.5}{4}=0.875(=\mathbf{0 . 5}) \\
& \operatorname{Pr}[\text { Value } \geq 5] \leq \frac{\mathbb{E}[\text { Value }]}{5}=\frac{3.5}{5}=0.7 \quad(\approx \mathbf{0 . 3 3}) \\
& \operatorname{Pr}[\text { Value } \geq 6] \leq \frac{\mathbb{E}[\text { Value }]}{6}=\frac{3.5}{6} \approx 0.58 \quad(\approx \mathbf{0 . 1 7}) \\
& \operatorname{Pr}[\text { Value } \geq 3] \leq \frac{\mathbb{E}[\text { Value }]}{3}=\frac{3.5}{3} \approx 1.17 \quad(\approx \mathbf{0 . 6 6})
\end{aligned}
$$

Quiz analysis: P1, part 1

x, y are independent variables with uniform distribution over [0,1]

- $\mathbb{E}[\mathrm{x}]=1 / 2$
- $\mathbb{E}\left[x^{2}\right]=\int_{0}^{1} x^{2} d x=\frac{1}{3}$
- $\mathbb{E}[x-y]=\mathbb{E}[x]-\mathbb{E}[y]=1 / 2-1 / 2=0$
- $\mathbb{E}[x y]=\mathbb{E}[x] \mathbb{E}[y]=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$
- $\mathbb{E}\left[(x-y)^{2}\right]=\mathbb{E}\left[x^{2}\right]-2 \mathbb{E}[x y]+\mathbb{E}\left[y^{2}\right]$

$$
=\frac{1}{3}-2 \times \frac{1}{4}+\frac{1}{3}=1 / 6
$$

Quiz analysis: P1, part 2

- What is the expected squared distance between two points generated uniformly at random inside a d-dimensional hypercube $[0,1]^{d}$?
- $\mathbb{E}\left[\sum_{i=1}^{d}\left(x_{i}-y_{i}\right)^{2}\right]=d \times \mathbb{E}\left[\left(x_{i}-y_{i}\right)^{2}\right]=\frac{d}{6}$

Quiz analysis: P2

- For fixed $a \geq 1$ show an example when Markov's inequality is tight, i.e.

$$
\operatorname{Pr}[\mathrm{X} \geq a]=\frac{\mathbb{E}[X]}{a}
$$

- Example: $X=a$ (with probability 1)
- $\mathbb{E}[X]=a, \operatorname{Pr}[\mathrm{X} \geq a]=\frac{\mathbb{E}[X]}{a}=1$

Quiz analysis: P3

- What is the variance of the first coordinate x_{1} of a vector x drawn from a uniform distribution over a unit d-dimensional sphere (set of points such that $\|x\|_{2}=1$)?
- $\operatorname{Var}\left[x_{1}\right]=\mathbb{E}\left[x_{1}^{2}\right]-\mathbb{E}^{2}\left[x_{1}\right]$
- $\mathbb{E}\left[x_{1}\right]=0$ (by symmetry)
- $\mathbb{E}\left[x_{1}^{2}\right]=\frac{1}{d} \mathbb{E}\left[\sum_{i=1}^{d} x_{i}^{2}\right]=\frac{1}{d}$

Quiz analysis: P4

- Sort a sequence of integers in $O\left(n^{2}\right)$ time - Expected solution: Bubblesort, Insertionsort, etc.
- Sort a sequence of integers in $O(n \log n)$ time
- Expected solution: Quicksort (in expectation), Mergesort (worst-case)

Core Classes to Take

- B503 (Algorithms), MW + TR
- B551 (Elements of Artificial Intelligence), TR
- B555 (Machine Learning), MW, this time
- B561 (Databases), MW + TR
- B565 (Data Mining), TR

Chebyshev's Inequality

- For every $c>0$:

$$
\operatorname{Pr}[|\boldsymbol{X}-\mathbb{E}[\boldsymbol{X}]| \geq c \sqrt{\operatorname{Var}[\boldsymbol{X}]}] \leq \frac{1}{c^{2}}
$$

- Proof:

$$
\operatorname{Pr}[|\boldsymbol{X}-\mathbb{E}[\boldsymbol{X}]| \geq c \sqrt{\operatorname{Var}[\boldsymbol{X}]}]
$$

$=\operatorname{Pr}\left[|\boldsymbol{X}-\mathbb{E}[\boldsymbol{X}]|^{2} \geq c^{2} \operatorname{Var}[\boldsymbol{X}]\right]$
(by squaring)
$=\operatorname{Pr}\left[|\boldsymbol{X}-\mathbb{E}[\boldsymbol{X}]|^{2} \geq c^{2} \mathbb{E}\left[|\boldsymbol{X}-\mathbb{E}[\boldsymbol{X}]|^{2}\right]\right]$ (def. of Var)
$\leq \frac{1}{c^{2}}$
(by Markov's inequality)

Chebyshev's Inequality

- For every $c>0$:

$$
\operatorname{Pr}[|\boldsymbol{X}-\mathbb{E}[\boldsymbol{X}]| \geq c \sqrt{\operatorname{Var}[\boldsymbol{X}]}] \leq \frac{1}{c^{2}}
$$

- Corollary ($\left.c^{\prime}=c \sqrt{\operatorname{Var}[\boldsymbol{X}]}\right)$:

For every $c^{\prime}>0$:

$$
\operatorname{Pr}\left[|\boldsymbol{X}-\mathbb{E}[\boldsymbol{X}]| \geq c^{\prime}\right] \leq \frac{\operatorname{Var}[\boldsymbol{X}]}{c^{\prime 2}}
$$

Chebyshev: Example

- For every $c^{\prime}>0$: $\operatorname{Pr}\left[|\boldsymbol{X}-\mathbb{E}[\boldsymbol{X}]| \geq c^{\prime}\right] \leq \frac{\operatorname{Var}[\boldsymbol{X}]}{c^{\prime 2}}$

$$
\mathbb{E}[\text { Value }]=3.5 ; \text { Var }[\text { Value }] \approx 2.91
$$

$$
\operatorname{Pr}[\text { Value } \geq 4 \text { or Value } \leq 3]=
$$

$$
\operatorname{Pr}[\mid \text { Value }-3.5 \mid \geq 0.5] \leq \frac{2.91}{0.5^{2}} \approx 11.64(=\mathbf{1})
$$

$\operatorname{Pr}[$ Value ≥ 5 or Value $\leq 2] \leq \frac{2.91}{1.5^{2}} \approx 1.29 \quad(\approx \mathbf{0 . 6 6})$
$\operatorname{Pr}[$ Value ≥ 6 or Value $\leq 1] \leq \frac{2.91}{2.5^{2}} \approx 0.47 \quad(\approx \mathbf{0 . 3 3})$

Chebyshev: Example

- Roll a dice 10 times:

$$
\begin{aligned}
& \text { Value }_{10}=\text { Average value over } 10 \text { rolls } \\
& \operatorname{Pr}\left[\text { Value }_{10} \geq 4 \text { or } \text { Value }_{10} \leq 3\right]=?
\end{aligned}
$$

- $X_{i}=$ value of the i-th roll, $\boldsymbol{X}=\frac{1}{10} \sum_{i=1}^{10} X_{i}$
- Variance ($=$ by linearity for independent r.vs):

$$
\begin{aligned}
\operatorname{Var}[\boldsymbol{X}] & =\operatorname{Var}\left[\frac{1}{10} \sum_{i=1}^{10} X_{i}\right]=\frac{1}{100} \operatorname{Var}\left[\sum_{i=1}^{10} X_{i}\right] \\
& =\frac{1}{100} \sum_{i=1}^{10} \operatorname{Var}\left[X_{i}\right] \approx \frac{1}{100} \cdot 10 \cdot 2.91=0.291
\end{aligned}
$$

Chebyshev: Example

- Roll a dice 10 times:

$$
\begin{aligned}
& \text { Value }_{10}=\text { Average value over } 10 \text { rolls } \\
& \operatorname{Pr}\left[\text { Value }_{10} \geq 4 \text { or } \text { Value }_{10} \leq 3\right]=?
\end{aligned}
$$

- Var $\left[\operatorname{Value}_{10}\right]=0.291$ (if n rolls then $2.91 / \mathrm{n}$)
- $\operatorname{Pr}\left[\right.$ Value $_{10} \geq 4$ or Value $\left._{10} \leq 3\right] \leq \frac{0.291}{0.5^{2}} \approx 1.16$
- $\operatorname{Pr}\left[\right.$ Value $_{n} \geq 4$ or Value $\left._{n} \leq 3\right] \leq \frac{2.91}{n \cdot 0.5^{2}} \approx \frac{11.6}{n}$

Chernoff bound

- Let $X_{1} \ldots X_{t}$ be independent and identically distributed r.vs with range [0,1] and expectation μ.
- Then if $X=\frac{1}{t} \sum_{i} X_{i}$ and $1>\delta>0$,

$$
\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq 2 \exp \left(-\frac{\mu t \delta^{2}}{3}\right)
$$

Chernoff bound (corollary)

- Let $X_{1} \ldots X_{t}$ be independent and identically distributed r.vs with range $[0, \mathrm{c}]$ and expectation μ.
- Then if $X=\frac{1}{t} \sum_{i} X_{i}$ and $1>\delta>0$,

$$
\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq 2 \exp \left(-\frac{\mu t \delta^{2}}{3 c}\right)
$$

Chernoff: Example

- $\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq 2 \exp \left(-\frac{\mu t \delta^{2}}{3 c}\right)$
- Roll a dice 10 times:

$$
\begin{aligned}
& \text { Value }_{10}=\text { Average value over } 10 \text { rolls } \\
& \operatorname{Pr}\left[\text { Value }_{10} \geq 4 \text { or } \text { Value }_{10} \leq 3\right]=?
\end{aligned}
$$

$-X=$ Value $_{10}, t=10, \mathrm{c}=6$
$-\mu=\mathbb{E}\left[X_{i}\right]=3.5$
$-\delta=\frac{0.5}{3.5}=\frac{1}{7}$

- $\operatorname{Pr}\left[\right.$ Value $_{10} \geq 4$ or Value $\left._{10} \leq 3\right] \leq 2 \exp \left(-\frac{3.5 \cdot 10}{3 \cdot 6 \cdot 49}\right)=$
$2 \exp \left(-\frac{35}{882}\right) \approx 2 \cdot 0.96=1.92$

Chernoff: Example

- $\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq 2 \exp \left(-\frac{\mu t \delta^{2}}{3 c}\right)$
- Roll a dice 1000 times:

Value $_{1000}=$ Average value over 1000 rolls
$\operatorname{Pr}\left[\right.$ Value $_{1000} \geq 4$ or Value $\left._{1000} \leq 3\right]=$?
$-X=$ Value $_{1000}, t=1000, \mathrm{c}=6$
$-\mu=\mathbb{E}\left[X_{i}\right]=3.5$
$-\delta=\frac{0.5}{3.5}=\frac{1}{7}$

- $\operatorname{Pr}\left[\right.$ Value $_{10} \geq 4$ or Value $\left._{10} \leq 3\right] \leq$
$2 \exp \left(-\frac{3.5 \cdot 1000}{3 \cdot 6 \cdot 49}\right)=2 \exp \left(-\frac{3500}{882}\right) \approx$
$2 \cdot \exp (-3.96) \approx 2 \cdot 0.02=0.04$

Chernoff v.s Chebyshev: Example

Let $\sigma=\operatorname{Var}\left[X_{i}\right]$:

- Chebyshev: $\operatorname{Pr}\left[|\boldsymbol{X}-\mu| \geq c^{\prime}\right] \leq \frac{\operatorname{Var}[\boldsymbol{X}]}{c^{\prime 2}}=\frac{\sigma}{t \boldsymbol{c}^{\prime 2}}$
- Chernoff: $\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq 2 \exp \left(-\frac{\mu t \delta^{2}}{3 c}\right)$

If t is very big:

- Values $\mu, \sigma, \delta, c, c^{\prime}$ are all constants!
- Chebyshev: $\operatorname{Pr}[|\boldsymbol{X}-\mu| \geq z]=O\left(\frac{1}{t}\right)$
- Chernoff: $\operatorname{Pr}[|\boldsymbol{X}-\mu| \geq z]=e^{-\Omega(t)}$

Chernoff v.s Chebyshev: Example

Large values of t is exactly what we need!

- Chebyshev: $\operatorname{Pr}[|\boldsymbol{X}-\mu| \geq z]=O\left(\frac{1}{t}\right)$
- Chernoff: $\operatorname{Pr}[|\boldsymbol{X}-\mu| \geq z]=e^{-\Omega(t)}$

So is Chernoff always better for us?

- Yes, if we have i.i.d. variables.
- No, if we have dependent or only pairwise independent random varaibles.
- If the variables are not identical - Chernoff-type bounds exist.

