CSCI B609 - Foundations of Data Science

Fall 2016

Homework 2: October 04

Name: YOUR NAME HERE Due: Monday, October 17, 11:59pm EST

Problem 2.1 (Exercise 3.1, text modified) Given a set of points $\{(x_i, y_i)|1 \le i \le n\}$ give formulas for parameters m and b of the line of the form y = mx + b that minimizes squared vertical distance between the points and the line (rather than the distance to the closest point on the line as we did in class). Formally if (x_i, y_i) is a data point and (x_i, y) is a point on the line then the vertical distance equals $|y_i - y|$.

Problem 2.2 (Problem 3.23, text modified) 1. For any matrix A show that $\sigma_k \leq \frac{\|A\|_F}{\sqrt{k}}$.

- 2. Prove that there exists a matrix B of rank at most k such that $||A B||_2 \le \frac{||A||_F}{\sqrt{k}}$.
- 3. Does there exist a matrix B of rank at most k such that $||A B||_F \le \frac{||A||_F}{\sqrt{k}}$? If yes, construct B, if no then give a counterexample.

Problem 2.3 (Excercise 6.11) What is the VC-dimension of the class \mathcal{H} of axis-parallel boxes in \mathbb{R}^d . That is $\mathcal{H} = \{h_{a,b} : a, b \in \mathbb{R}^d\}$ where $h_{a,b}(x) = 1$ is $a_i \leq x \leq b_i$ for all $i = 1, \ldots, d$ and $h_{a,b}(x) = 0$ otherwise.

- 1. Prove that the VC-dimension is at least your chosen V by given a set of V points that is shattered by the class (and explaining why it is shattered).
- 2. Prove taht the VC-dimension is at most your chosen V by proving that no set of V+1 points can be shattered.

Problem 2.4 (Excercise 6.12) Recall that the margin of a linear separator w^* is defined as $\gamma = 1/\|w^*\|_2$. Say that a set of points is shattered by linear separators of margin γ if every laeling of the points in S is achievable by a linear separator of margin at least γ . Prove that no set of $1/\gamma^2 + 1$ points in the unit ball is shattered by linear separators of margin γ .

Hint: think about the Perceptron algorithm and try a proof by contradiction.