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Big Data = buzzword 

• Non-experts, media:  

– a lot of spreadsheets, medical data, 

– electropop band 

– …  

 

 

 

 

 

 

 



Big Data = buzzword 

• Business experts, analysts, data scientists:  

– Volume, velocity, variety, (veracity)  

– Databases, statistics, cloud computing, machine 
learning, privacy, …  

 



Big Data: technical definition 

• “Big Data” = “Data that doesn’t fit in RAM” 
– Massively parallel computing: 

MapReduce/Hadoop/Apache Spark 

– Streaming: Apache Storm, etc. 

– “algorithms for Big Data” class at Penn: 
http://grigory.us/big-data-class.html 
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Algorithms for Big Data 

• Algorithms/theory perspective: a 
fundamental challenge 

– Data fits into RAM ⇒ decades of previous work 

– Data doesn’t fit into RAM ⇒ algorithmic 
challenges are qualitative, not quantitative 

 



Algorithms for Big Data 

• User’s perspective: paradigm shift brought by 
cloud services 

– Outsourcing computation and data storage is 
great for both businesses and researchers 

– Cloud service providers: Amazon EC2, Google 
Compute Engine, … 

– Open source stacks/frameworks: 
MapReduce/Hadoop, Apache Spark, etc. 

 



Business perspective 

• Pricings: 

– https://cloud.google.com/pricing/ 

– https://aws.amazon.com/pricing/ 

• ~Linear with space and time usage 

– 100 machines: 5K $/year  

– 10000 machines: 0.5M $/year 

• You pay a lot more for using provided 
algorithms 

– https://aws.amazon.com/machine-
learning/pricing/ 
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• Cloud computing platforms (all offer free trials): 

– Amazon EC2 (1 CPU/12mo) 

– Microsoft Azure ($200/1mo) 

– Google Compute Engine ($200/2mo) 

• Distributed Google Code Jam 

– First time in 2015: 
https://code.google.com/codejam/distributed_index.html  

– Caveats:  

• Very basic aspects of distributed algorithms (few rounds) 

• Small data (~1 𝐺𝐵, with hundreds MB RAM) 

• Fast query access (~0.01 𝑚𝑠 per request), “data with queries”   

Getting hands dirty 

https://code.google.com/codejam/distributed_index.html


“Big Data Theory” = Turing meets Shannon 

= + 
Network Time / 
Information and 
Communication 

Complexity  

CPU time / 
Computational 

Complexity 



Computational Model 
• Input: size n 

• 𝑴 machines, space 𝑺 on each (𝑺 = 𝒏1−𝜖 , 0 < 𝜖 < 1 ) 

– Constant overhead in total space: 𝑴 ⋅ 𝑺 =  𝑂(𝒏) 

• Output: solution to a problem (often size O(𝒏)) 

– Doesn’t fit on a single machine (𝑺 ≪  𝒏) 

 

 

 

  𝑴 machines   
S space 

𝐈𝐧𝐩𝐮𝐭: size 𝒏  ⇒ ⇒ 𝐎𝐮𝐭𝐩𝐮𝐭: 𝑠𝑖𝑧𝑒 𝑂(𝒏) 



  𝑴 machines   
S space 

Computational Model 
• Computation/Communication in 𝑹 rounds: 

– Every machine performs a near-linear time 
computation => Total running time 𝑂(𝒏𝟏+𝒐(𝟏)𝑹) 

– Every machine sends/receives at most 𝑺 bits of 
information => Total communication 𝑂(𝒏𝑹). 

 
Goal: Minimize 𝑹.                        Ideally: 𝑹 = constant. 

 

𝑶(𝑺𝟏+𝒐(𝟏)) time 

≤ 𝑺 bits 



MapReduce-style computations 

 
What I won’t discuss today 
• PRAMs (shared memory, multiple processors) (see 

e.g. [Karloff, Suri, Vassilvitskii‘10+) 
– Computing XOR requires Ω (log 𝑛) rounds in CRCW PRAM 
– Can be done in 𝑂(log𝒔 𝑛) rounds of MapReduce 

• Pregel-style systems, Distributed Hash Tables (see 
e.g. Ashish Goel’s class notes and papers) 

• Lower-level implementation details (see e.g. 
Rajaraman-Leskovec-Ullman book) 

 



Models of parallel computation 
• Bulk-Synchronous Parallel Model (BSP) [Valiant,90]  

Pro: Most general, generalizes all other models 

Con: Many parameters, hard to design algorithms 

• Massive Parallel Computation [Feldman-Muthukrishnan-
Sidiropoulos-Stein-Svitkina’07, Karloff-Suri-Vassilvitskii’10, 
Goodrich-Sitchinava-Zhang’11, ..., Beame, Koutris, Suciu’13] 

Pros:  

• Inspired by modern systems (Hadoop, MapReduce, Dryad, … ) 

• Few parameters, simple to design algorithms 

• New algorithmic ideas, robust to the exact model specification 

• # Rounds is an information-theoretic measure => can prove 
unconditional lower bounds 

• Between linear sketching and streaming with sorting 

 

 



Sorting: Terasort 

• Sort Benchmark: http://sortbenchmark.org/ 
• Sorting 𝒏 keys on 𝑴 = 𝑶(𝒏𝟏−𝝐) machines 

– Would like to partition keys uniformly into blocks: first 𝒏/𝑴, 
second 𝒏/𝑴, etc. 

– Sort the keys locally on each machine 

• Build an approximate histogram: 
– Each machine takes a sample of size 𝒔 
– All 𝑴 ∗ 𝒔 ≤ 𝑺 = 𝒏𝝐 samples are sorted locally 
– Blocks are computed based on the samples 

• By Chernoff: 𝐌 ∗ 𝒔 = 𝑂
𝑙𝑜𝑔 𝒏

𝜶𝟐   samples suffice to compute 
all block sizes up to ±𝜶𝒏 error with high probability 

• Take 𝛼 =
𝒏𝜖−1

2
: error O 𝑺  

• 𝐌 ∗ 𝒔 = 𝑂( 𝒏2−𝟐𝝐) = 𝑶(𝑴𝟐) ≤ 𝑶(𝒏𝝐) for 𝜖 ≥ 2/3  
 



Algorithms for Graphs 
• Dense graphs vs. sparse graphs 

– Dense: 𝑺 ≫ |𝑉| 

• Linear sketching: one round 

• “Filtering” (Output fits on a single machine) [Karloff, 
Suri Vassilvitskii, SODA’10; Ene, Im, Moseley, KDD’11; 
Lattanzi, Moseley, Suri, Vassilvitskii, SPAA’11; Suri, 
Vassilvitskii, WWW’11] 

– Sparse: 𝑺 ≪ |𝑉| (or 𝑺 ≪ solution size) 

Sparse graph problems appear hard (Big open question: 
connectivity in o(log 𝑛) rounds?) 

 
VS. 



Algorithm for Connectivity 

• Blog: http://grigory.us/blog/mapreduce-model/ 

• Version of Boruvka’s algorithm 

• Repeat 𝑂(log 𝑛) times: 
– Each component chooses a neighboring component 

– All pairs of chosen components get merged 

• How to avoid chaining? 

• If the graph of components is bipartite and only 
one side gets to choose then no chaining 

• Randomly assign components to the sides 
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Algorithm for Connectivity: Setup 
Data: N edges of an undirected graph.  
 
Notation: 
• For 𝑣 ∈ 𝑉 let 𝜋(𝑣) be its id in the data 
• Γ(𝑆) ≡ set of neighbors of a subset of vertices S⊆V. 
 
Labels: 
• Algorithms assigns a label ℓ(𝑣) to each v.  
• Let 𝐿𝑣 ⊆ 𝑉 be the set of vertices with the label ℓ(𝑣) 

(invariant: subset of the connected component 
containing 𝑣).  

 
Active vertices: 
• Some vertices will be called active. 
• Every set 𝐿𝑣 will have exactly one active vertex. 

 



Algorithm for Connectivity 

• Mark every vertex  as active and let ℓ(𝑣) = 𝜋(𝑣). 

• For phases 𝑖 = 1,2, … , 𝑂(log 𝑁) do: 
– Call each active vertex a leader with probability 1/2. 

If v is a leader, mark all vertices in 𝐿𝑣 as leaders. 

– For every active non-leader vertex w, find the 
smallest leader(with respect to 𝜋) vertex w⋆ ∈ Γ(𝐿𝑤). 

– If  w⋆  is not empty, mark w passive and relabel each 
vertex with label w by  w⋆. 

• Output the set of CCs, where vertices having the 
same label according to ℓ are in the same 
component. 

 



Algorithm for Connectivity: Analysis 
• If ℓ(𝑢) = ℓ(𝑣) then 𝑢 and 𝑣 are in the same CC. 

• Unique labels w.h.p after 𝑂(log𝑁) phases.  

• For every CC # active vertices reduces by a constant 
factor in every phase.  
– Half of the active vertices declared as non-leaders.  

– Fix an active non-leader vertex 𝒗.  

– If at least two different labels in the CC of v then there is 
an edge (𝒗′, 𝒖) such that ℓ(𝒗) = ℓ(𝒗′) and ℓ(𝒗′) ≠ ℓ(𝒖).  

– 𝒖 marked as a leader with probability 1/2; in expectation 
half of the active non-leader vertices will change their 
label.  

– Overall, expect 1/4 of labels to disappear.  

– By Chernoff after 𝑂(log𝑁) phases # of active labels in 
every connected component will drop to one w.h.p. 



Algorithm for Connectivity: 
Implementation Details 

• Distributed data structure  of size 𝑂 𝑉  to maintain 
labels, ids, leader/non-leader status, etc. 
– O(1) rounds per stage to update the data structure 

• Edges stored locally with all auxiliary info 
– Between stages: use distributed data structure to update 

local info on edges 

• For every active non-leader vertex w, find the 
smallest leader (w.r.t 𝜋) vertex w⋆ ∈ Γ(𝐿𝑤) 
– Each (non-leader, leader) edges sends an update to the 

distributed data structure 

• Much faster with Distributed Hash Table Service (DHT) 
[Kiveris, Lattanzi, Mirrokni, Rastogi, Vassilvitskii’14+ 



Approximating Geometric Problems 
in Parallel Models 

Geometric graph (implicit):         

Euclidean distances between n points in ℝ𝒅 

 

 

 

Already have solutions for old NP-hard problems 
(Traveling Salesman, Steiner Tree, etc.) 

• Minimum Spanning Tree (clustering, vision) 

• Minimum Cost Bichromatic Matching (vision) 



Polynomial time (“easy”) 

• Minimum Spanning Tree 

• Earth-Mover Distance =  

Min Weight Bi-chromatic Matching 

 

NP-hard (“hard”) 

• Steiner Tree 

• Traveling Salesman 

• Clustering (k-medians, facility 
location, etc.) 

Geometric Graph Problems 

Combinatorial problems on graphs in ℝ𝒅 
 

Arora-Mitchell-style 
“Divide and Conquer”, 
easy  to implement in 
Massively Parallel 
Computational Models, 
but bad running time 

  

  Need new theory! 



MST: Single Linkage Clustering 
• Blog: http://grigory.us/blog/mapreduce-clustering/ 

• *Zahn’71+ Clustering via MST (Single-linkage):  

k clusters: remove 𝒌 − 𝟏 longest edges from MST 

• Maximizes minimum intercluster distance 

[Kleinberg, Tardos] 
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Earth-Mover Distance 

• Computer vision: compare two pictures of 
moving objects (stars, MRI scans) 



Large geometric graphs 
• Graph algorithms: Dense graphs vs. sparse graphs 

– Dense: 𝑺 ≫ |𝑉|.  

– Sparse: 𝑺 ≪ |𝑉|.  

 

• Our setting: 
– Dense graphs, sparsely represented: O(n) space 

– Output doesn’t fit on one machine (𝑺 ≪  𝒏) 

• Today: (1 + 𝜖)-approximate MST  
– 𝒅 = 2  (easy to generalize)  

– 𝑹 = log𝑺 𝒏= O(1) rounds (𝑺 = 𝒏𝛀(𝟏)) 

 



𝑂(log 𝑛)-MST in 𝑅 = 𝑂(log 𝑛)  rounds  

• Assume points have integer coordinates 0,… , Δ , where 
Δ = 𝑂 𝒏𝟐  . 

 
Impose an 𝑂(log 𝒏)-depth quadtree  
Bottom-up: For each cell in the quadtree  

– compute optimum MSTs in subcells 
– Use only one representative from each cell on the next level 
  

Wrong representative:  
O(1)-approximation per level 



Wrong representative:  
O(1)-approximation per level 

𝝐𝑳-nets 
• 𝝐𝑳-net for a cell C with side length 𝑳: 

Collection S of vertices in C, every vertex is at distance <= 𝝐𝑳 from some 
vertex in S. (Fact: Can efficiently compute 𝝐-net of size 𝑂

1

𝝐2 ) 

      

      Bottom-up: For each cell in the quadtree  
– Compute optimum MSTs in subcells 
– Use 𝝐𝑳-net from each cell on the next level 

 

• Idea: Pay only O(𝝐𝑳) for an edge cut by cell with side 𝑳 
• Randomly shift the quadtree: 

Pr 𝑐𝑢𝑡 𝑒𝑑𝑔𝑒 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡 ℓ 𝑏𝑦 𝑳 ∼ ℓ/𝑳 – charge errors 

𝑳 𝑳 𝜖𝑳 



Randomly shifted quadtree 
• Top cell shifted by a random vector in 0, 𝑳 2 

Impose a randomly shifted quadtree (top cell length 𝟐𝚫) 

      Bottom-up: For each cell in the quadtree  

– Compute optimum MSTs in subcells 

– Use 𝝐𝑳-net from each cell on the next level 

 

 

 

 

 

Pay 5 instead of 4 
Pr[𝐁𝐚𝐝 𝐂𝐮𝐭] = 𝛀(1) 

2 
 

1 
 

𝐁𝐚𝐝 𝐂𝐮𝐭 



1 + 𝝐 -MST in 𝐑 = 𝑂(log  𝑛)  rounds  
• Idea: Only use short edges inside the cells 

Impose a randomly shifted quadtree (top cell length 
𝟐𝚫

𝝐 
 ) 

      Bottom-up: For each node (cell) in the quadtree  

– compute optimum Minimum Spanning Forests in subcells, 
using edges of length ≤ 𝝐𝑳 

– Use only 𝝐𝟐𝑳-net from each cell on the next level 

 

 

 

 

 

Sketch of analysis (𝑻∗ = optimum MST): 
𝔼[Extra cost] = 
𝔼[ Pr 𝒆 𝑖𝑠 𝑐𝑢𝑡 𝑏𝑦 𝑐𝑒𝑙𝑙 𝑤𝑖𝑡 𝑠𝑖𝑑𝑒 𝑳 ⋅  𝝐𝑳𝒆∈𝑻∗  ] 

≤ 𝝐 log 𝒏 𝑑 𝒆

𝒆∈𝑻∗

= 

𝝐 log 𝒏 ⋅ 𝑐𝑜𝑠𝑡(𝑻∗) 
 

2 
 

1 
 

Pr[𝐁𝐚𝐝 𝐂𝐮𝐭] = 𝑶(𝝐) 
 

𝑳 = 𝛀(
𝟏

𝝐
)  



1 + 𝝐 -MST in 𝐑 = 𝑂(1)  rounds  

• 𝑂(log 𝒏) rounds => O(log𝑺 𝒏) = O(1) rounds 

– Flatten the tree: ( 𝑴 × 𝑴)-grids instead of (2x2) grids at 
each level. 

 

 

 

 

Impose a randomly shifted ( 𝑴 × 𝑴)-tree 

      Bottom-up: For each node (cell) in the tree  

– compute optimum MSTs in subcells via edges of length ≤ 𝝐𝑳 

– Use only 𝝐𝟐𝑳-net from each cell on the next level 

 

⇒   𝑴 = 𝒏Ω(1) 
 



1 + 𝝐 -MST in 𝐑 = 𝑂(1)  rounds  

Theorem: Let 𝒍 = # levels in a random tree P 
𝔼𝑷 𝐀𝐋𝐆 ≤ 1 + 𝑂 𝝐𝒍𝒅 𝐎𝐏𝐓  

Proof (sketch):  
• 𝚫𝑷(𝑢, 𝑣) = cell length, which first partitions (𝑢, 𝑣) 

• New weights: 𝒘𝑷 𝑢, 𝑣 = 𝑢 − 𝑣
2
+ 𝝐𝚫𝑷 𝑢, 𝑣  

 
𝑢 − 𝑣

2
≤ 𝔼𝑷[𝒘𝑷 𝑢, 𝑣 ] ≤ 1 + 𝑂 𝝐𝒍𝒅 𝑢 − 𝑣

2
 

 
• Our algorithm implements Kruskal for weights 𝒘𝑷 

𝑢 𝑣 

𝚫𝑷 𝑢, 𝑣  



“Solve-And-Sketch” Framework 

(1 + 𝜖)-MST: 

– “Load balancing”: partition the tree into parts of 
the same size 

– Almost linear time locally: Approximate Nearest 
Neighbor data structure *Indyk’99+ 

– Dependence on dimension d (size of 𝝐-net is 

𝑂
𝒅

𝝐

𝒅
) 

– Generalizes to bounded doubling dimension 

– Implementation in MapReduce 

 

 

 
 

 



“Solve-And-Sketch” Framework 

(1 + 𝜖)-Earth-Mover Distance, Transportation Cost 

• No simple “divide-and-conquer” Arora-Mitchell-style 
algorithm (unlike for general matching) 

• Only recently sequential 1 + 𝜖 -apprxoimation in  

𝑂𝜖 𝒏 log𝑂 1 𝒏 time [Sharathkumar, Agarwal ‘12] 

Our approach (convex sketching): 

• Switch to the flow-based version 

• In every cell, send the flow to the closest net-point 
until we can connect the net points 

 



“Solve-And-Sketch” Framework 

Convex sketching the cost function for 𝝉 net 
points 

• 𝐹:ℝ𝝉−1 → ℝ = the cost of routing fixed 
amounts of flow through the net points 

• Function 𝐹’ = 𝐹 + “normalization” is 
monotone, convex and Lipschitz, (1 + 𝝐)-
approximates 𝐹 

• We can (1 + 𝝐)-sketch it using a lower convex 
hull 



Thank you! http://grigory.us 

• More in the CIS 700 class: 
http://grigory.us/big-data-class.html  
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