CSCI B609:

 "Foundations of Data Science"

 "Foundations of Data Science"

 Lecture 17/18: Graph Sketching

 Lecture 17/18: Graph Sketching}

Slides at http://grigory.us/data-science-class.html

Grigory Yaroslavtsev
 http://grigory.us

Sketching Graphs?

- We know how to sketch vectors: $v \rightarrow M v$
- How about sketching graphs?
- $G(V, E) \equiv A_{G}$ (adjacency matrix): $A_{G} \rightarrow M A_{G}$
- Sketch columns of A_{G}
- $n=|V|, m=|E|$
- $O($ poly $(\log n))$ sketch per vertex / $\tilde{O}(n)$ total
- Check connectivity
- Check bipartiteness
- As always, space rather than dimension. Why?

Graph Streams

- Semi-streaming model: [Muthukrishnan '05; Feigenbaum, Kannan, McGregor, Suri, Zhang'05]
- Graph defined by the stream of edges e_{1}, \ldots, e_{m}
- Space $\tilde{O}(n)$, edges processed in order
- Connectivity is easy on $\tilde{O}(n)$ space for insertion-only
- Dynamic graphs:
- Stream of insertion/deletion updates $+e_{i_{1}},-e_{i_{2}}, \ldots,-e_{i_{t}}$ (assume sequence is correct)
- Resulting graph has edge e_{i} if it wasn't deleted after the last insertion
- Linear sketching dynamic graphs:

$$
M A_{G \backslash e}=M A_{G}-M A_{\mathrm{e}}
$$

Distributed Computing

- Linear sketches for distributed processing
- S servers with o(m) memory:
- Send m / S edges $\left(E_{1}, \ldots, E_{S}\right)$ to each server
- Compute sketches $M E_{1}, \ldots, M E_{S}$ locally
- Send sketches to a central server
- Compute $M A_{G}=\sum_{i}^{S} M E_{i}$
- M has to have a small representation (same issue as in streaming)

Connectivity

- Thm. Connectivity is sketchable in $\tilde{O}(n)$ space
- Framework:
- Take existing connectivity algorithm (Boruvka)
- Sketch $A_{G} \rightarrow M A_{G}$
- Run Boruvka on $M A_{G}$
- Important that the sketch is homomorphic w.r.t the algorithm

Part 1: Parallel Connectivity (Boruvka)

- Repeat until no edges left:
- For each vertex, select any incident edge
- Contract selected edges

- Lemma: process converges in $O(\log n)$ steps

Part 2: Graph Representation

- For a vertex i let a_{i} be a vector in $\mathbb{R}^{\binom{n}{2}}$
- Non-zero entries for edges (i, j)

$$
\begin{aligned}
& -a_{i}[i, j]=1 \text { if } j>i \\
& -a_{i}[i, j]=-1 \text { if } j<i
\end{aligned}
$$

- Example:

$$
\begin{aligned}
& a_{1}=(1,1,1,1,0, \ldots, 0) \\
& a_{2}=(-1,0,0,0,0,0,1,0,1, \ldots, 0)
\end{aligned}
$$

- Lem: For any $S \subseteq V \operatorname{supp}\left(\sum_{i \in S} a_{i}\right)=E(S, V \backslash S)$

Part 3: L_{0}-Sampling

- There is a distribution over $M \in \mathbb{R}^{d \times m}$ with $d=O\left(\log ^{2} m\right)$ such w.p. 9/10 that $\forall a \in \mathbb{R}^{m}$:

$$
C a \rightarrow e \in \operatorname{supp}(a)
$$

[Cormode, Muthukrishnan, Rozenbaum’05; Jowhari, Saglam, Tardos '11]

- Constant probability suffices - still $O(\log n)$ Boruvka iterations

Final Algorithm

- Construct $\log n \ell_{0}$-samplers for each a_{i}
- Run Boruvka on sketches:
- Use $C_{1} a_{j}$ to get an edge incident on a node j
- For $i=2$ to t :
- To get incident edge on a component $S \subseteq V$ use:

$$
\begin{aligned}
& \sum_{j \in S} C_{i} a_{j}=C_{i}\left(\sum_{j \in S} a_{j}\right) \rightarrow \\
& \rightarrow e \in \operatorname{supp}\left(\sum_{j \in S} a_{j}\right)=E(S, V \backslash S)
\end{aligned}
$$

K-Connectivity

- Graph is k-connected is every cut has size $\geq k$
- Thm: There is a $O\left(n k \log ^{3} n\right)$-size linear sketch for k-connectivity
- Generalization: There is an $O\left(n \log ^{5} n / \epsilon^{2}\right)$ size linear sketch which allows to approximate all cuts in a graph up to error $(1 \pm \epsilon)$

K-connectivity Algorithm

- Algorithm for k-connectivity:
- Let F_{1} be a spanning forest of $G(V, E)$
- For $i=2, \ldots, k$
- Let F_{i} be a spanning forest of $G\left(V, E \backslash F_{1} \backslash \cdots \backslash F_{i-1}\right)$
- Lem: $G\left(V, F_{1}+\cdots+F_{k}\right)$ is k-connected iff $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is.
- \Rightarrow Trivial
- \Leftarrow Consider a cut in $G\left(V, \sum_{i=1}^{k} F_{i}\right)$ of size $<k$
$\Rightarrow \exists i^{*}$: this cut didn't grow in step i^{*}
\Rightarrow there is a cut in $G(V, E)$ of size $<k$
\Rightarrow contradiction

K-connectivity Algorithm

- Construct k independent linear sketches $\left\{M_{1} A_{G}, M_{2} A_{G} \ldots, M_{k} A_{G}\right\}$ for connectivity
- Run k-connectivity algorithm on sketches:
- Use $M_{1} A_{G}$ to get a spanning forest F_{1} of G
- Use $M_{2} A_{G}-M_{2} A_{F_{1}}=M_{2}\left(A_{G-F_{1}}\right)$ to find F_{2}
- Use $M_{3} A_{G}-M_{3} A_{F_{1}}-M_{3} A_{F_{2}}=M_{3}\left(A_{G-F_{1}-F_{2}}\right)$ to find F_{3}

Bipartiteness

- Reduction: Given G define G^{\prime} where vertices

$$
v \rightarrow\left(v_{1}, v_{2}\right) ; \text { edges }(u, v) \rightarrow\left(u_{1}, v_{2}\right) \&\left(u_{2}, v_{1}\right)
$$

- Lem: \# connected components doubles iff the graph is bipartite.
- Thm: $O\left(n \log ^{3} n\right)$-size linear sketch for kconnectivity (sketch G^{\prime} (implicitly).)

Minimum Spanning Tree

- If $n_{i}=\#$ connected components in a subgraph induced by edges of weight $\leq(1+\epsilon)^{i}$:

$$
w(M S T) \leq n-(1+\epsilon)^{r}+\sum_{i=0 \ldots . r-1} \lambda_{i} n_{i} \leq(1+\epsilon) w(M S T)
$$

where $\lambda_{i}=\left((1+\epsilon)^{i+1}-(1+\epsilon)^{i}\right.$

- cc(G) = \#connected components of G
- Round weights up to the nearest power of $1+\epsilon$
- $G_{i} \equiv$ subgraph with edges of weight $\leq(1+\epsilon)^{i}$
- Edges taken by the Kruskal's algorithm:
$-\mathrm{n}-\mathrm{cc}\left(G_{0}\right)$ edges of weight 1
$-c c\left(G_{0}\right)-c c\left(G_{1}\right)$ edges of weight $(1+\epsilon)$
$-\operatorname{cc}\left(G_{i-1}\right)-\operatorname{cc}\left(G_{i}\right)$ edges of weight $(1+\epsilon)^{i}$

Minimum Spanning Tree

- Let $r=\log _{1+\epsilon} W$ where $W=$ max edge weight
- Overall weight:

$$
\begin{aligned}
& n-c c\left(G_{0}\right)+\sum_{1}^{r}(1+\epsilon)^{i}\left(c c\left(G_{i-1}\right)-c c\left(G_{i}\right)\right) \\
= & n-(1+\epsilon)^{r}+\sum_{0}^{r-1}\left((1+\epsilon)^{i+1}-(1+\epsilon)^{i}\right) \operatorname{cc}\left(G_{i}\right)
\end{aligned}
$$

- Thm: $(1+\epsilon)$-approx. MST weight can be computed with $\tilde{O}(n)$ linear sketch for $W=$ poly(n)

MST: Single Linkage Clustering

- [Zahn'71] Clustering via MST (Single-linkage):
k clusters: remove $\boldsymbol{k}-1$ longest edges from MST
- Maximizes minimum intercluster distance

[Kleinberg, Tardos]

Cut Sparsification

- Two problems:
- Approximating Min-Cut in the graph (up to $1 \pm \epsilon$)
- Preserving all cuts in the graph (up to $1 \pm \epsilon$)
- General cut sparsification framework:
- Sample each edge e with probability p_{e}
- Assign sampled edges weights $1 / p_{e}$
- Expected weight of each cut is preserved, but too many cuts - can't take union bound

Cut Sparsification

- For an edge e let $\lambda_{e}=$ weight of the minimum cut that contains e
- $\lambda=$ size of the Min-Cut in G
- Thm [Fung et al.]: If G is an undirected weighted graph the if $p_{e} \geq \min \left(\frac{C \log ^{2} n}{\lambda_{e} \epsilon^{2}}, 1\right)$ then the cut sparsification alg. Preserves weights of all cuts up to ($1 \pm \epsilon$)
- Thm [Karger]: $p_{e} \geq \min \left(\frac{C \log n}{\lambda \epsilon^{2}}, 1\right)$ preserves Min-Cut up to $(1 \pm \epsilon)$

Minimum Cut

Algorithm:

- For $i=\{0,1, \ldots, 2 \log n\}$:
- Let G_{i} be the subgraph of G where each edge is sampled with probability $1 / 2^{i}$
- Let $H_{i}=\mathrm{F}_{1}, \ldots, F_{k}$ where $k=O\left(\frac{1}{\epsilon^{2}} \cdot \log n\right)$ and F_{i} are forests constructed by the k-connectivity alg.
- Return $2^{j} \lambda\left(H_{j}\right)$ where $j=\min \left\{i: \lambda\left(H_{i}\right)<k\right\}$

Space: $O\left(\frac{n \log ^{4} n}{\epsilon^{2}}\right)$, works for dynamic graph streams

Minimum Cut: Analysis

- Key property: If G_{i} has $\leq k$ edges across a cut then H_{i} contains all such edges
- $i^{*}=\left\lfloor\log \max \left\{1, \frac{\lambda \epsilon^{2}}{6 \log n}\right\}\right\rfloor$
- $i \leq i^{*} \Rightarrow p_{e} \geq \min \left(\frac{6 \log n}{\lambda \epsilon^{2}}, 1\right) \Rightarrow \min$ cut in G_{i} is approximating min-cut in G up to $(1 \pm \epsilon)$
- $i=i^{*}$: By Chernoff bound \# edges in $G_{i^{*}}$ that crosses min-cut in G is $O\left(\frac{1}{\epsilon^{2}} \log n\right) \leq k$ w.h.p.

Cut Sparsification

Algorithm:

- For $i=\{0,1, \ldots, 2 \log n\}$:
- Let G_{i} be the subgraph of G where each edge is sampled with probability $1 / 2^{i}$
- Let $H_{i}=\mathrm{F}_{1}, \ldots, F_{k}$ where $k=O\left(\frac{1}{\epsilon^{2}} \cdot \log ^{2} n\right)$ and F_{i} are forests constructed by the k-connectivity alg.
- For each edge e let $j_{e}=\min \left\{\mathrm{i}: \lambda_{e}\left(H_{i}\right)<k\right\}$.
- If $e \in H_{j_{e}}$ then add e to the sparsifier with weight $2^{j_{e}}$
- Space: $O\left(\frac{n \log ^{5} n}{\epsilon^{2}}\right)$, works for dynamic graph streams
- Analysis similar to the Min-Cut using [Fung et al.]

