CSCI B609:

 "Foundations of Data Science"

 "Foundations of Data Science"
 Lecture 11/12: VC-Dimension and VC-Theorem

Slides at http://grigory.us/data-science-class.html

Grigory Yaroslavtsev
 http://grigory.us

Intro to ML

- Classification problem
- Instance space $X:\{0,1\}^{d}$ or \mathbb{R}^{d} (feature vectors)
- Classification: come up with a mapping $X \rightarrow\{0,1\}$
- Formalization:
- Assume there is a probability distribution D over X
- $\boldsymbol{c}^{*}=$ "target concept" (set $\boldsymbol{c}^{*} \subseteq X$ of positive instances)
- Given labeled i.i.d. samples from D produce $\boldsymbol{h} \subseteq X$
- Goal: have \boldsymbol{h} agree with \boldsymbol{c}^{*} over distribution D
- Minimize: $\operatorname{err}_{D}(\boldsymbol{h})=\operatorname{Pr}_{D}\left[\boldsymbol{h} \Delta \boldsymbol{c}^{*}\right]$
$-\operatorname{err}_{D}(\boldsymbol{h})=$ "true" or "generalization" error

Intro to ML

- Training error
$-S=$ labeled sampled (pairs $(x, l), x \in X, l \in\{0,1\})$
- Training error: $\operatorname{err}_{S}(\boldsymbol{h})=\frac{\left|S \cap\left(\boldsymbol{h} \Delta \boldsymbol{c}^{*}\right)\right|}{|S|}$
- "Overfitting": low training error, high true error
- Hypothesis classes:
- H: collection of subsets of X called hypotheses
- If $X=\mathbb{R}$ could be all intervals $\{[a, b], a \leq b\}$
- If $X=\mathbb{R}^{d}$ could be linear separators:

$$
\left\{\left\{\boldsymbol{x} \in \mathbb{R}^{d} \mid \boldsymbol{w} \cdot \boldsymbol{x} \geq w_{0}\right\} \mid \boldsymbol{w} \in \mathbb{R}^{d}, w_{0} \in \mathbb{R}\right\}
$$

- If S is large enough (compared to some property of H) then overfitting doesn't occur

Overfitting and Uniform Convergence

- PAC learning (agnostic): For $\epsilon, \delta>0$ if

$$
|S| \geq 1 / 2 \epsilon^{2}(\ln |H|+\ln 2 / \delta)
$$

then with probability $1-\delta$:

$$
\forall \boldsymbol{h} \in \mathrm{H}:\left|\operatorname{err}_{S}(\boldsymbol{h})-e r r_{D}(\boldsymbol{h})\right| \leq \epsilon
$$

- Size of the class of hypotheses can be very large
- Can also be infinite, how to give a bound then?
- We will see ways around this today

VC-dimension

- VC-dim $(H) \leq \ln |H|$
- Consider database age vs. salary
- Query: fraction of the overall population with ages $35-45$ and salary $\$(50-70) K$
- How big a database can answer with $\pm \epsilon$ error
- 100 ages $\times 1000$ salaries $\Rightarrow 10^{10}$ rectangles
- $1 / 2 \epsilon^{2}(10 \ln 10+\ln 2 / \delta)$ samples suffice
- What if we don't want to discretize?

VC-dimension

- Def. Concept class H shatters a set S if $\forall A \subseteq S$ there is $\mathrm{h} \in H$ labeling A positive and $\mathrm{A} \backslash S$ negative
- Def. VC-dim $(H)=$ size of the largest shattered set
- Example: axis-parallel rectangles on the plane
- 4-point diamond is shattered
- No 5-point set can be shattered
- VC-dim(axis-parallel rectangles) $=4$
- Def. $H[S]=\{h \cap S: h \in H\}=$ set of labelings of the points in S by functions in H
- Def. Growth function $H(n)=\max _{|S|=n}|H[S]|$
- Example: growth function of a-p. rectangles is $O\left(n^{4}\right)$

Growth function \& uniform convergence

- PAC learning via growth function: For $\epsilon, \delta>0$ if

$$
|S|=n \geq 8 / \epsilon^{2}(\ln |2 H(2 n)|+\ln 1 / \delta)
$$

then with probability $1-\delta$:
$\forall \boldsymbol{h} \in \mathrm{H}:\left|e r r_{S}(\boldsymbol{h})-e r r_{D}(\boldsymbol{h})\right| \leq \epsilon$

- Thm (Sauer's lemma). If VC-dim(H)=d then:

$$
H(n) \leq \sum_{i=0}^{d}\binom{n}{i} \leq\left(\frac{e n}{d}\right)^{d}
$$

- For half-planes, VC-dim $=3, H(n)=O\left(n^{2}\right)$

Sauer's Lemma Proof

- Let $d=V C-\operatorname{dim}(H)$ we'll show that if $|S|=n$:

$$
|H[S]| \leq\binom{ n}{\leq d}=\sum_{i=0}^{d}\binom{n}{i}
$$

- $\binom{n}{\leq d}=\binom{n-1}{\leq d}+\binom{n-1}{\leq d-1}$

Proof (induction by set size):

- $S \backslash\{x\}$: by induction $|H[S \backslash\{x\}]| \leq\binom{ n-1}{\leq d}$
- $|H[S]|-|H[S \backslash\{x\}]| \leq\binom{ n-1}{\leq d-1}$?

$$
|H[S]|-|H[S \backslash\{x\}]| \leq\binom{ n-1}{\leq d-1}
$$

- If $H[S]>H[S \backslash\{x\}]$ then it is because of the sets that differ only on x so let's pair them up
- For $h \in H[S]$ containing x let $\operatorname{twin}(h)=h \backslash\{x\}$

$$
T=\{h \in H[S]: x \in h \text { and } \operatorname{twin}(\boldsymbol{h}) \in H[S]\}
$$

- Note: $|H[S]|-|H[S \backslash\{x\}]|=|T|$
- What is the VC-dimension of T ?
- If VC-dim $(T)=d^{\prime}$ then $\boldsymbol{R} \subseteq S \backslash\{x\}$ of d^{\prime} is shattered - All $2^{d^{\prime}}$ subsets of \boldsymbol{R} are $0 / 1$ extendable on x
$-d \geq d^{\prime}+1 \Rightarrow \mathrm{VC}-\operatorname{dim}(T) \leq d-1 \Rightarrow$ apply induction

Examples

- Intervals of the reals:
- Shatter 2 points, don't shatter $3 \Rightarrow V C-\operatorname{dim}=2$
- Pairs of intervals of the reals:
- Shatter 4 points, don't shatter $5 \Rightarrow V C$-dim $=4$
- Convex polygons
- Shatter any n points on a circle $\Rightarrow V C$-dim $=\infty$
- Linear separators in d dimensions:
- Shatter $d+1$ points (unit vectors + origin)
- Take subset S and set $w_{i}=0$ if $i \in S$:
separator $w^{T} x \leq 0$

VC-dimension of linear separators

No set of $d+2$ points can be shattered

- Thm (Radon). Any set $S \subseteq \mathbb{R}^{d}$ with $|S|=d+2$ can be partitioned into two subsets A, B s.t.:

Convex $(A) \cap$ Convex $(B) \neq \emptyset$

- Form $d \times(d+2)$ matrix A , columns $=$ points in S
- Add extra all-1 row \Rightarrow matrix B
- $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{d+2}\right)$, non-zero vector: $B x=0$
- Reordering: $x_{1}, x_{2}, \ldots, x_{s} \geq 0, x_{s+1}, \ldots, x_{d+2}<0$
- Normalize: $\sum_{i=1}^{S}\left|x_{i}\right|=1$

Radon's Theorem (cont.)

- $\boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{a}_{\boldsymbol{i}}=\mathrm{i}$-th columns of B and A
- $\sum_{i=1}^{S}\left|x_{i}\right| \boldsymbol{b}_{\boldsymbol{i}}=\sum_{i=s+1}^{d+2}\left|x_{i}\right| \boldsymbol{b}_{\boldsymbol{i}}$
$-\sum_{i=1}^{s}\left|x_{i}\right| \boldsymbol{a}_{\boldsymbol{i}}=\sum_{i=s+1}^{d+2}\left|x_{i}\right| \boldsymbol{a}_{\boldsymbol{i}}$
$-\sum_{i=1}^{S}\left|x_{i}\right|=\sum_{i=s+1}^{d+2}\left|x_{i}\right|=1$
- Convex combinations of two subsets intersect
- Contradiction

Growth function \& uniform convergence

- PAC learning via growth function: For $\epsilon, \delta>0$ if

$$
|S|=n \geq 8 / \epsilon^{2}(\ln |2 H(2 n)|+\ln 1 / \delta)
$$

then with probability $1-\delta$:

$$
\forall \boldsymbol{h} \in \mathrm{H}:\left|e r r_{S}(\boldsymbol{h})-e r r_{D}(\boldsymbol{h})\right| \leq \epsilon
$$

- Assume event A:

$$
\exists \boldsymbol{h} \in \mathrm{H}:\left|e r_{S}(\boldsymbol{h})-\operatorname{err}_{D}(\boldsymbol{h})\right|>\epsilon
$$

- Draw S^{\prime} of size n, event B:

$$
\begin{aligned}
& \exists \boldsymbol{h} \in \mathrm{H}:\left|\operatorname{err}_{S}(\boldsymbol{h})-\operatorname{err}_{D}(\boldsymbol{h})\right|>\epsilon \\
&\left|\operatorname{err}_{S^{\prime}}(\boldsymbol{h})-\operatorname{err}_{D}(\boldsymbol{h})\right|<\epsilon / 2 \\
& \hline
\end{aligned}
$$

$\operatorname{Pr}[B] \geq \operatorname{Pr}[A] / 2$

- Lem. If $n=\Omega\left(1 / \epsilon^{2}\right)$ then $\operatorname{Pr}[B] \geq \operatorname{Pr}[A] / 2$.
- Proof:

$$
\operatorname{Pr}[B] \geq \operatorname{Pr}[A, B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]
$$

- Suppose A occurs:

$$
\exists \boldsymbol{h} \in \mathrm{H}:\left|e r r_{S}(\boldsymbol{h})-e r r_{D}(\boldsymbol{h})\right|>\epsilon
$$

- When we draw S^{\prime} :

$$
\mathbb{E}_{S^{\prime}}\left[\operatorname{err}_{S^{\prime}}(\boldsymbol{h})\right]=\operatorname{err}_{D}(\boldsymbol{h})
$$

- By Chernoff:

$$
\begin{gathered}
P r_{S^{\prime}}\left[\left|e r r_{S^{\prime}}(\boldsymbol{h})-e r r_{D}(\boldsymbol{h})\right|<\epsilon / 2\right] \geq \frac{1}{2} \\
\operatorname{Pr}[B] \geq \operatorname{Pr}[A] \times 1 / 2
\end{gathered}
$$

VC-theorem Proof

- Suffices to show that $\operatorname{Pr}[B] \leq \delta / 2$
- Consider drawing $2 n$ samples $S^{\prime \prime}$ and then randomly partitioning into S^{\prime} and S
- B^{*} : same as B for such $\left(S^{\prime}, S\right) \Rightarrow \operatorname{Pr}\left[B^{*}\right]=\operatorname{Pr}[B]$
- Will show: \forall fixed $S^{\prime \prime} P r_{S, s^{\prime}}\left[B^{*} \mid S^{\prime \prime}\right]$ is small
- Key observation: once $S^{\prime \prime}$ is fixed there are only $\left|H\left[S^{\prime \prime}\right]\right| \leq H(2 n)$ events to care about
- Suffices: for every fixed $h \in H\left[S^{\prime \prime}\right]$:

$$
\underset{S, S^{\prime}}{P r}\left[B^{*} \text { occurs for } h \mid S^{\prime \prime}\right] \leq \frac{\delta}{2 H(2 n)}
$$

VC-theorem Proof (cont.)

- Randomly pair points in $S^{\prime \prime}$ into $\left(a_{i}, b_{i}\right)$ pairs
- With prob. $1 / 2: a_{i} \rightarrow S, b_{i} \rightarrow S^{\prime}$ or $a_{i} \rightarrow S^{\prime}, b_{i} \rightarrow S$
- Diff. between $e r r_{S}(\boldsymbol{h})$ and $e r r_{S^{\prime}}(\boldsymbol{h})$ for $i=1, \ldots, n$
- Only changes if mistake on only one of $\left(a_{i}, b_{i}\right)$
- With prob. $1 / 2$ difference changes by ± 1
- By Chernoff:

$$
\operatorname{Pr}\left[\left|e r r_{S}(\boldsymbol{h})-\operatorname{err}_{S^{\prime}}(\boldsymbol{h})\right|>\frac{\epsilon n}{4}\right]=e^{-\Omega\left(\epsilon^{2} n\right)}
$$

- $e^{-\Omega\left(\epsilon^{2} n\right)} \leq \frac{\delta}{2 H(2 n)}$ for n from the Thm. statement

