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Intro to ML 

• Classification problem 

– Instance space 𝑋: 0,1 𝒅 or ℝ𝒅 (feature vectors) 

– Classification: come up with a mapping 𝑋 → *0,1+ 

• Formalization: 

– Assume there is a probability distribution 𝐷 over 𝑋 

– 𝒄∗= “target concept” (set 𝒄∗ ⊆ 𝑋 of positive instances) 

– Given labeled i.i.d. samples from 𝐷 produce 𝒉 ⊆ 𝑋 

– Goal: have 𝒉 agree with 𝒄∗ over distribution 𝐷 

– Minimize: 𝑒𝑟𝑟𝐷 𝒉 = Pr
𝐷
,𝒉 Δ 𝒄∗- 

– 𝑒𝑟𝑟𝐷 𝒉  = “true” or “generalization” error 

 

 

 

 

 



Intro to ML 
• Training error 

– 𝑆 = labeled sampled (pairs 𝑥, 𝑙 , 𝑥 ∈ 𝑋, 𝑙 ∈ *0,1+) 

– Training error: 𝑒𝑟𝑟𝑆 𝒉 =
𝑆∩ 𝒉 Δ 𝒄∗

𝑆
 

• “Overfitting”: low training error, high true error 

• Hypothesis classes: 
– H: collection of subsets of 𝑋 called hypotheses 

• If 𝑋 = ℝ could be all intervals 𝑎, 𝑏 , 𝑎 ≤ 𝑏  

• If 𝑋 = ℝ𝑑 could be linear separators: 

𝒙 ∈ ℝ𝑑 𝒘 ⋅ 𝒙 ≥ 𝑤0 |𝒘 ∈ ℝ
𝑑 , 𝑤0 ∈ ℝ  

• If 𝑆 is large enough (compared to some property of 
H) then overfitting doesn’t occur 



Overfitting and Uniform Convergence 

• PAC learning (agnostic): For 𝜖, 𝛿 > 0 if  
𝑆 ≥ 1/2𝜖2(ln 𝐻 + ln 2/𝛿) 

then with probability 1 − 𝛿:  

∀𝒉 ∈ H: 𝑒𝑟𝑟𝑆 𝒉 − 𝑒𝑟𝑟𝐷 𝒉 ≤ 𝜖 

• Size of the class of hypotheses can be very large 

• Can also be infinite, how to give a bound then? 

• We will see ways around this today 



VC-dimension 

• VC-dim(𝐻) ≤ ln 𝐻  

• Consider database age vs. salary 

• Query: fraction of the overall population with 
ages 35−45 and salary $(50 − 70)K 

• How big a database can answer with ±𝜖 error 

•  100 ages × 1000 salaries ⇒ 1010 rectangles 

•  1/2𝜖2(10 ln 10 + ln 2/𝛿) samples suffice 

• What if we don’t want to discretize? 



VC-dimension 
• Def. Concept class 𝐻 shatters a set 𝑆 if ∀𝐴 ⊆ 𝑆 

there is h ∈ 𝐻 labeling 𝐴 positive and A ∖ 𝑆 negative   

• Def. VC-dim(𝐻) = size of the largest shattered set 

• Example: axis-parallel rectangles on the plane 
– 4-point diamond is shattered 

– No 5-point set can be shattered 

– VC-dim(axis-parallel rectangles) = 4 

• Def. 𝐻 𝑆 = *ℎ ∩ 𝑆: ℎ ∈ 𝐻+ = set of labelings of the 
points in 𝑆 by functions in 𝐻 

• Def. Growth function 𝐻 𝑛 = max 𝑆 =𝑛 |𝐻 𝑆 | 

• Example: growth function of a-p. rectangles is 𝑂(𝑛4) 

 



Growth function & uniform convergence 

• PAC learning via growth function: For 𝜖, 𝛿 > 0 if  
𝑆 = 𝑛 ≥ 8/𝜖2(ln 2𝐻(2𝑛) + ln 1/𝛿) 

then with probability 1 − 𝛿:  

∀𝒉 ∈ H: 𝑒𝑟𝑟𝑆 𝒉 − 𝑒𝑟𝑟𝐷 𝒉 ≤ 𝜖 

• Thm (Sauer’s lemma). If VC-dim(H)= 𝑑 then:  

𝐻 𝑛 ≤ 
𝑛

𝑖
≤
𝑒𝑛

𝑑

𝑑
𝑑

𝑖=0

 

• For half-planes, VC-dim = 3, 𝐻 𝑛 = 𝑂(𝑛2) 

 



Sauer’s Lemma Proof 

• Let 𝑑 = 𝑉𝐶-dim(𝐻) we’ll show that if 𝑆 = 𝑛:  

𝐻 𝑆 ≤
𝑛

≤ 𝑑
= 

𝑛

𝑖

𝑑

𝑖=0

 

• 𝑛
≤𝑑
= 𝑛−1
≤𝑑
+ 𝑛−1
≤𝑑−1

 

Proof (induction by set size): 

• 𝑆 ∖ 𝑥 : by induction 𝐻 𝑆 ∖ *𝑥+ ≤  𝑛−1
≤𝑑

 

• 𝐻,𝑆- − 𝐻 𝑆 ∖ 𝑥 ≤ 𝑛−1
≤𝑑−1
? 

 

 

 



𝐻,𝑆- − 𝐻 𝑆 ∖ 𝑥 ≤
𝑛 − 1

≤ 𝑑 − 1
 

 • If 𝐻 𝑆 > 𝐻 𝑆 ∖ 𝑥  then it is because of the sets 
that differ only on 𝑥 so let’s pair them up 

• For ℎ ∈ 𝐻 𝑆  containing 𝑥 let 𝒕𝒘𝒊𝒏 𝒉 = ℎ ∖ 𝑥  
𝑇 = *ℎ ∈ 𝐻 𝑆 : 𝑥 ∈ ℎ  𝑎𝑛𝑑 𝒕𝒘𝒊𝒏 𝒉 ∈ 𝐻 𝑆 + 

• Note: 𝐻 𝑆 − 𝐻 𝑆 ∖ 𝑥 = 𝑇  

• What is the VC-dimension of 𝑇? 

– If VC-dim 𝑇 = 𝑑′ then 𝑹 ⊆ 𝑆 ∖ *𝑥+ of 𝑑′ is shattered 

– All 2𝑑
′
 subsets of 𝑹 are 0/1 extendable on 𝑥 

– 𝑑 ≥ 𝑑′ + 1 ⇒  VC-dim 𝑇 ≤ 𝑑 − 1 ⇒ apply induction 



Examples 
• Intervals of the reals: 

– Shatter 2 points, don’t shatter 3 ⇒ 𝑉𝐶-dim = 2 

• Pairs of intervals of the reals: 

– Shatter 4 points, don’t shatter 5 ⇒ 𝑉𝐶-dim = 4 

• Convex polygons 

– Shatter any 𝑛 points on a circle ⇒ 𝑉𝐶-dim = ∞ 

• Linear separators in 𝑑 dimensions: 

– Shatter 𝑑 + 1 points (unit vectors + origin) 

– Take subset S  and set 𝑤𝑖 = 0 if 𝑖 ∈ 𝑆:  

separator 𝑤𝑇𝑥 ≤ 0 

 



VC-dimension of linear separators 
No set of 𝑑 + 2 points can be shattered 

• Thm (Radon). Any set 𝑆 ⊆ ℝ𝑑 with 𝑆 = 𝑑 + 2 

can be partitioned into two subsets 𝐴, 𝐵 s.t.: 

Convex(𝐴) ∩ Convex(𝐵) ≠ ∅ 

• Form 𝑑 × 𝑑 + 2  matrix A, columns = points in 𝑆 

• Add extra all-1 row ⇒ matrix B 

• 𝒙 = 𝑥1, 𝑥2, … , 𝑥𝑑+2 , non-zero vector: 𝐵𝑥 = 0 

• Reordering: 𝑥1, 𝑥2, … , 𝑥𝑠 ≥ 0, 𝑥𝑠+1, … , 𝑥𝑑+2 < 0 

• Normalize:  𝑥𝑖 = 1
𝑠
𝑖=1  

  



Radon’s Theorem (cont.) 

• 𝒃𝒊, 𝒂𝒊 = i-th columns of 𝐵 and 𝐴 

•  |𝑥𝑖|
𝑠
𝑖=1 𝒃𝒊 =  |𝑥𝑖|

𝑑+2
𝑖=𝑠+1 𝒃𝒊 

–  |𝑥𝑖|
𝑠
𝑖=1 𝒂𝒊 =  |𝑥𝑖|

𝑑+2
𝑖=𝑠+1 𝒂𝒊 

–  |𝑥𝑖|
𝑠
𝑖=1 =  |𝑥𝑖|

𝑑+2
𝑖=𝑠+1 = 1 

• Convex combinations of two subsets intersect 

• Contradiction 

 

 

 

 



Growth function & uniform convergence 

• PAC learning via growth function: For 𝜖, 𝛿 > 0 if  
𝑆 = 𝑛 ≥ 8/𝜖2(ln 2𝐻(2𝑛) + ln 1/𝛿) 

then with probability 1 − 𝛿:  

∀𝒉 ∈ H: 𝑒𝑟𝑟𝑆 𝒉 − 𝑒𝑟𝑟𝐷 𝒉 ≤ 𝜖 

• Assume event A: 
∃𝒉 ∈ H: 𝑒𝑟𝑟𝑆 𝒉 − 𝑒𝑟𝑟𝐷 𝒉 > 𝜖 

• Draw 𝑆′ of size 𝑛, event B:  
∃𝒉 ∈ H:         𝑒𝑟𝑟𝑆 𝒉 − 𝑒𝑟𝑟𝐷 𝒉 > 𝜖 

                                    𝑒𝑟𝑟𝑆′ 𝒉 − 𝑒𝑟𝑟𝐷 𝒉 < 𝜖/2 

 

 



𝑃𝑟 𝐵 ≥ Pr ,𝐴-/2 

• Lem. If 𝑛 = Ω(1/𝜖2) then 𝑃𝑟 𝐵 ≥ Pr ,𝐴-/2. 
• Proof: 

𝑃𝑟 𝐵 ≥ Pr 𝐴, 𝐵 = Pr 𝐴 Pr ,𝐵|𝐴- 
• Suppose 𝐴 occurs: 

∃𝒉 ∈ H: 𝑒𝑟𝑟𝑆 𝒉 − 𝑒𝑟𝑟𝐷 𝒉 > 𝜖 
• When we draw 𝑆′: 

𝔼𝑆′ 𝑒𝑟𝑟𝑆′ 𝒉 = 𝑒𝑟𝑟𝐷 𝒉  
• By Chernoff: 

𝑃𝑟𝑆′ 𝑒𝑟𝑟𝑆′ 𝒉 − 𝑒𝑟𝑟𝐷 𝒉 < 𝜖/2 ≥
1

2
 

𝑃𝑟 𝐵 ≥ Pr 𝐴 × 1/2 
 
 
 

 



VC-theorem Proof 

• Suffices to show that 𝑃𝑟 𝐵 ≤ 𝛿/2 

• Consider drawing 2𝑛 samples 𝑆′′ and then 
randomly partitioning into 𝑆′ and 𝑆 

• 𝐵∗: same as 𝐵 for such (𝑆′,𝑆) ⇒ Pr 𝐵∗ = Pr 𝐵  

• Will show: ∀ fixed 𝑆′′ 𝑃𝑟𝑆,S′ 𝐵
∗|𝑆′′  is small 

• Key observation: once 𝑆′′ is fixed there are only 
|𝐻 𝑆′′ | ≤ 𝐻(2𝑛) events to care about 

• Suffices: for every fixed ℎ ∈ 𝐻 𝑆′′ : 

𝑃𝑟
𝑆,S′
𝐵∗  occurs for ℎ 𝑆′′ ≤

𝛿

2𝐻 2𝑛
 



VC-theorem Proof (cont.) 

• Randomly pair points in 𝑆′′ into (𝑎𝑖 , 𝑏𝑖) pairs 

• With prob. ½:  𝑎𝑖 → 𝑆, 𝑏𝑖 → 𝑆
′ or 𝑎𝑖 → 𝑆

′, 𝑏𝑖 → 𝑆 

• Diff. between 𝑒𝑟𝑟𝑆 𝒉  and 𝑒𝑟𝑟𝑆′ 𝒉  for 𝑖 = 1,… , 𝑛 

• Only changes if mistake on only one of (𝑎𝑖 , 𝑏𝑖) 

– With prob. ½ difference changes by ±1 

– By Chernoff:  

Pr 𝑒𝑟𝑟𝑆 𝒉  − 𝑒𝑟𝑟𝑆′ 𝒉 >
𝜖𝑛

4
= 𝑒−Ω(𝜖

2𝑛) 

• 𝑒−Ω(𝜖
2𝑛) ≤ 

𝛿

2𝐻 2𝑛
 for 𝑛 from the Thm. statement 

 


