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Project Example:  
Gradient Descent in TensorFlow 

• Gradient Descent (will be covered in class) 
• Adagrad: 

http://www.magicbroom.info/Papers/DuchiHaSi10.pdf 
• Momentum (stochastic gradient descent + tweaks): 

http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf 
• Adam (Adaptive + momentum): 

http://arxiv.org/pdf/1412.6980.pdf 
• FTRL: 

http://jmlr.org/proceedings/papers/v15/mcmahan11b/mc
mahan11b.pdf 

• RMSProp: 
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_
slides_lec6.pdf 
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Random Walks and Markov Chains 

• Random  walk: 
– Directed graph 𝑮 𝑽, 𝑬  

– Starting vertex 𝒙𝟎 ∈ 𝑽 

– Edge 𝑖, 𝑗 : probability 𝑝𝑖𝑗 of transition 𝑖 → 𝑗 

– ∀𝑖:  𝑝𝑖𝑗 = 1𝑗    
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Strongly Connected Components 
• Def (Strongly Connected Component). 𝑆 ⊆ 𝑉 such that 

∀𝑖, 𝑗 ∈ 𝑆 there exist paths 𝑖 → 𝑗 and 𝑗 → 𝑖 

• SCC’s form a partition of the vertex set 

• Terminal SCC: no outgoing edges 

• Long enough random walk → Terminal SCC 
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Matrix Form and Stationary Distribution 

• 𝒑𝒕 = probability distribution over vertices at time 𝒕 

• 𝒑0 = 1,0,0, … , 0  

• 𝒑𝒕𝑃 = 𝒑𝒕+𝟏 

• 𝑃 = transition matrix with entries 𝑝𝑖𝑗 

• If 𝒕 → ∞ then average of 𝒑𝑖
′𝑠 converges: 

 
1

𝒕
 𝒑𝒊

𝒕−𝟏
𝒊=0 → 𝝅 

• 𝝅 = stationary distribution of 𝑃 

• 𝝅 is unique and doesn’t depend on 𝑥0 if G is 
strongly connected 

• Note: 𝒑𝒕 for 𝒕 → ∞ doesn’t always converge! 

 

 

 



Stationary Distribution 

• Long-term average: 

𝑎𝒕 =
1

𝒕
 𝒑𝒊

𝒕−𝟏
𝒊=0   

• Thm. If G is strongly connected then 𝑎𝒕 → 𝝅: 

– 𝝅𝑃 = 𝝅 

–  𝝅𝑖 = 1𝑖  

– 𝝅 𝑃 − 𝐼, 𝟏 = ,𝟎, 1- 

• We will show that 𝑃 − 𝐼, 𝟏  has rank 𝑛 ⇒ there is a 
unique solution to 𝝅 𝑃 − 𝐼, 𝟏 = ,𝟎, 1- 

 



Stationary Distribution Theorem 
• Thm. 𝑛 × 𝑛 + 1  matrix 𝑃 − 𝐼, 𝟏  has rank 𝑛 

• 𝐴 = 𝑃 − 𝐼, 𝟏  

• Rank(A) < 𝑛 ⇒ two lin. indep. solutions to Ax=0 

•  𝑝𝑖𝑗 = 1𝑗 ⇒  𝑝𝑖𝑗𝑗 − 1 = 0 (row sums of 𝐴) 

– 𝟏, 0  is a solution to Ax = 0 

• Assume there is another solution 𝒙, 𝜶 ⊥ 𝟏, 0  

– 𝑃 − 𝐼 𝒙 + 𝜶𝟏 = 𝟎 

– ∀𝑖:  𝑝𝑖𝑗𝑥𝑗 − 𝑥𝑖 + 𝜶 = 0𝑗 ⇒ 𝑥𝑖 =  𝑝𝑖𝑗𝑥𝑗 + 𝜶𝑗  

• 𝒙, 𝜶 ⊥ 𝟏, 0 ⇒ not all 𝒙𝑗  are equal 

 

 

 

 

 



Stationary Distribution Theorem Cont. 

• ∀𝑖: 𝑥𝑖 =  𝑝𝑖𝑗𝑥𝑗 + 𝜶𝑗  

• 𝒙, 𝛼 ⊥ 𝟏, 0 ⇒ not all 𝒙𝑗  are equal 

• 𝑺 = 𝑖: 𝑥𝑖 = 𝑀𝑎𝑥𝑗=1
𝑛 𝑥𝑗 = set of max value coord. 

– 𝑺  is non-empty 

• 𝐺 strongly connected ⇒ ∃ 𝑒𝑑𝑔𝑒 𝑘, 𝑙 : 𝑘 ∈ 𝑺, 𝑙 ∈ 𝑺  

• ⇒ 𝑥𝑘 >  𝑝𝑘𝑗𝑥𝑗𝑗 ⇒ 𝜶 > 0 

• Symmetric argument with 𝑺 = 𝑖: 𝑥𝑖 = 𝑀𝑖𝑛𝑗=1
𝑛 𝑥𝑗  

• ⇒ 𝑥𝑘′ <  𝑝𝑘′𝑗𝑥𝑗𝑗 ⇒ 𝜶 < 0 

• Contradiction so 𝟏, 0  is the unique solution 

 



Fundamental Theorem of Markov Chains 

• Thm. If 𝑃 is transition matrix of a strongly 
connected Markov Chain and 𝑎𝒕 =

1

𝒕
 𝒑𝒊

𝒕−𝟏
𝒊=0 : 

– There exists a unique 𝝅: 𝝅𝑃 = 𝝅 

– For any starting distribution: ∃ lim
𝒕→∞

𝑎𝒕 = 𝝅 

• 𝑎𝒕 is a probability vector 
• After one step: 𝑎𝒕 → 𝑎𝒕𝑃 

• 𝑎𝒕𝑃 − 𝑎𝒕 =
1

𝒕
 𝒑𝑖𝑃

𝒕−1
𝑖=0 −

1

𝒕
 𝒑𝑖

𝒕−1
𝑖=0 =

 
1

𝒕
 𝒑𝑖

𝒕
𝑖=1 −

1

𝒕
 𝒑𝑖

𝒕−1
𝑖=0 =

1

𝒕
(𝒑𝒕 − 𝒑0) 

• 𝑏𝒕 = 𝑎𝒕𝑃 − 𝑎𝒕 satisfies | 𝑏𝒕 |1 ≤
2

𝒕
→ 0 



Fundamental Theorem of Markov Chains 

• 𝑛 × 𝑛 + 1  𝑚𝑎𝑡𝑟𝑖𝑥 𝑨 = 𝑃 − 𝐼, 𝟏  has rank 𝑛 

• 𝑛 × 𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑩 = last 𝑛 columns of 𝑨 

• First 𝑛 columns of 𝑨 sum to zero ⇒ 𝑟𝑎𝑛𝑘 𝑩 = 𝑛 

• 𝑐𝒕 from 𝑏𝒕 = 𝑎𝒕𝑃 − 𝑎𝒕 by dropping first entry 

• 𝑎𝒕𝐵 = 𝑐𝒕, 1 ⇒ 𝑎𝒕 = 𝑐𝒕, 1 𝐵−1 

• 𝑏𝒕 → 0 ⇒ 𝑐𝒕, 1 → 𝟎, 1 ⇒ 𝑎𝒕 → 𝟎, 1 𝐵−1 

• Let 𝟎, 1 𝐵−1 = 𝝅. 

• Since 𝑎𝒕 → 𝝅 vector 𝝅 is a probability distribution 

• 𝑎𝒕 𝑃 − 𝐼 = 𝑏𝒕 = 0 ⇒ 𝝅 𝑃 − 𝐼 = 0 

 



Intro to ML 

• Classification problem 

– Instance space 𝑋: 0,1 𝒅 or ℝ𝒅 (feature vectors) 

– Classification: come up with a mapping 𝑋 → *0,1+ 

• Formalization: 

– Assume there is a probability distribution 𝐷 over 𝑋 

– 𝒄∗= “target concept” (set 𝒄∗ ⊆ 𝑋 of positive instances) 

– Given labeled i.i.d. samples from 𝐷 produce 𝒉 ⊆ 𝑋 

– Goal: have 𝒉 agree with 𝒄∗ over distribution 𝐷 

– Minimize: 𝑒𝑟𝑟𝐷 𝒉 = Pr𝐷,𝒉 Δ 𝒄∗- 

– 𝑒𝑟𝑟𝐷 𝒉  = “true” or “generalization” error 

 

 

 

 

 



Intro to ML 
• Training error 

– 𝑆 = labeled sampled (pairs 𝑥, 𝑙 , 𝑥 ∈ 𝑋, 𝑙 ∈ *0,1+) 

– Training error: 𝑒𝑟𝑟𝑆 𝒉 =
𝑆∩ 𝒉 Δ 𝒄∗

𝑆
 

• “Overfitting”: low training error, high true error 

• Hypothesis classes: 
– H: collection of subsets of 𝑋 called hypotheses 

• If 𝑋 = ℝ could be all intervals 𝑎, 𝑏 , 𝑎 ≤ 𝑏  

• If 𝑋 = ℝ𝑑 could be linear separators: 

𝒙 ∈ ℝ𝑑 𝒘 ⋅ 𝒙 ≥ 𝑤0 |𝒘 ∈ ℝ𝑑 , 𝑤0 ∈ ℝ  

• If 𝑆 is large enough (compared to some property of 
H) then overfitting doesn’t occur 



Overfitting and Uniform Convergence 
• PAC learning (agnostic): For 𝜖, 𝛿 > 0 if  

𝑆 ≥ 1/2𝜖2(ln 𝐻 + ln 2/𝛿) 

then with probability 1 − 𝛿:  
∀𝒉 ∈ H: 𝑒𝑟𝑟𝑆 𝒉 − 𝑒𝑟𝑟𝐷 𝒉 ≤ 𝜖 

• 𝑥𝑗 = r.v. (=1 if 𝒉 has error on 𝑗-th sample in 𝑆) 

• 𝔼,𝑥𝑗- = 𝑒𝑟𝑟𝐷 𝒉  and 𝑒𝑟𝑟𝑆 𝒉 =
1

𝑆
 𝑥𝑗

𝑆
𝑗=1   

• Chernoff bound: 

Pr 𝑒𝑟𝑟𝑆 𝒉 − 𝑒𝑟𝑟𝐷 𝒉 > 𝜖 ≤ 2𝑒−2 𝑆 𝜖2
 

• Union bound:  

Pr ∃𝒉 ∈ 𝐻: 𝑒𝑟𝑟𝑆 𝒉 − 𝑒𝑟𝑟𝐷 𝒉 > 𝜖 ≤ 2 𝐻 𝑒−2 𝑆 𝜖2
≤ 𝛿 

 



Examples 

• Learning disjunctions 
– 𝑋 = 0,1 𝒅 target concept is OR: ∨𝑖∈𝑇 𝑥𝑖 

– 𝐻 = 2𝒅 so 𝑆 = 1/2𝜖2(𝑑 ln 2 + ln 2/𝛿) 

• Occam’s razor: 
– Target concept can be described by ≤ 𝑏 bits 

– 𝐻 = 2𝑏 so 𝑆 = 1/2𝜖2(𝑏 ln 2 + ln 2/𝛿) 

• Learning decision trees 
– 𝑋 = 0,1 𝒅  

– 𝐻  = trees with k nodes 

– Described with 𝑏 = 𝑂(𝑘 log 𝑑) bits  

 



Online Learning + Perceptron Algorithm 

• For 𝑡 = 1,2, … ,  

– Algorithm given 𝑥𝑡 ∈ 𝑋 and asked to predict 𝑙𝑡 

– Algorithm is told 𝒄∗(𝑥𝑡) and charged if 𝒄∗ 𝑥𝑡 ≠ 𝑙𝑡 

• Linear separator given by 𝒘∗ ∈ ℝ𝑑 

𝒙 ∈ ℝ𝑑 𝒙𝑇𝒘∗ ≥ 1 = positive examples 

𝒙 ∈ ℝ𝑑 𝒙𝑇𝒘∗ ≤ −1 = negative examples 

• 𝒙𝑇𝒘∗/ 𝒘∗
𝟐

 = distance to hyperplane 𝒙𝑇𝒘∗ = 0 

• 𝛾 = 1/ 𝒘∗
𝟐

= “margin” of the separator  

 



Perceptron Algorithm 

• Set 𝒘 = 0 then for 𝑡 = 1,2, … : 
– Given example 𝑥𝑡 predict sgn 𝒙𝑡

𝑇𝒘  
– If mistake was made then update: 

• If 𝑥𝑡  was positive: 𝒘 ← 𝒘 + 𝒙𝒕 
• If 𝑥𝑡  was negative: 𝒘 ← 𝒘 − 𝒙𝒕 

• Thm. Perceptron makes ≤ 𝑅2 𝒘∗
2

2
 mistakes where 

𝑅 = max
𝑡

 𝒙𝑡 .  

• Proof: invariants 𝒘𝑻𝒘∗ and 𝒘
𝟐

 

• For each mistake 𝒘𝑻𝒘∗ → 𝒘𝑻𝒘∗ + 1 
– On positive: 𝒘 + 𝒙𝑡

𝑇𝒘∗ = 𝒘𝑻𝒘∗ + 𝒙𝑡
𝑇𝒘∗ ≥ 𝒘𝑻𝒘∗ + 1 

– On negative: 𝒘 − 𝒙𝑡
𝑇𝒘∗ = 𝒘𝑻𝒘∗ − 𝒙𝑡

𝑇𝒘∗ ≥ 𝒘𝑻𝒘∗ + 1 
 
 



Perceptron Analysis cont. 
• On each mistake 𝒘

2

2
 increase by ≤ 𝑅2 

• On positive: 𝒘 + 𝒙𝑡
𝑇 𝒘 + 𝒙𝑡 = 𝒘

2

2
+ 2𝒙𝑡

𝑇𝒘 +

𝒙𝑡 2

2
≤ 𝒘

2

2
+ 𝒙𝑡 2

2
= 𝒘

2

2
+ 𝑅2 

• On negative: 𝒘 − 𝒙𝑡
𝑇 𝒘 − 𝒙𝑡 = 𝒘

2

2
− 2𝒙𝑡

𝑇𝒘 +

𝒙𝑡 2

2
≤ 𝒘

2

2
+ 𝒙𝑡 2

2
= 𝒘

2

2
+ 𝑅2 

• 𝑀 mistakes: 𝒘𝑻𝒘∗ ≥ 𝑀, 𝒘
2

2
≤ 𝑀𝑅2 or 𝒘

2
≤ 𝑀𝑅  

• Since 
𝒘𝑻𝒘∗

𝒘∗
2

≤ 𝒘
2

 we have: 

𝑀

𝒘∗
2

≤ 𝑀𝑅 ⇒ 𝑀 ≤ 𝑅 𝒘∗
2

⇒ 𝑀 ≤ 𝑅2 𝒘∗
2

2
 



Perceptron with noisy data 

• What if there is no perfect separator? 

• Hinge loss of 𝒘∗: 
– On positive 𝑥𝑡: max 0,1 − 𝒙𝑡

𝑇𝒘∗  

– On negative 𝑥𝑡: max 0,1 + 𝒙𝑡
𝑇𝒘∗  

• Sample hinge loss 𝐿ℎ𝑖𝑛𝑔𝑒 𝒘∗, 𝑆 = sum of 
hinge losses over all samples in 𝑆 

• Thm. #mistakes of Perceptron is at most: 

min𝒘∗  𝑅2||𝒘∗  
2

2
+ 2𝐿ℎ𝑖𝑛𝑔𝑒 𝒘∗, 𝑆  

 



Proof of noisy perceptron 

• As before we have 𝒘
2

2
≤ 𝑀𝑅2 

• On positive: 𝒘 + 𝒙𝑡
𝑇𝒘∗ = 𝒘𝑻𝒘∗ + 𝒙𝑡

𝑇𝒘∗ ≥

𝒘𝑻𝒘∗ + 1 − 𝐿ℎ𝑖𝑛𝑔𝑒 𝒘∗, 𝒙𝑡  

• On negative: 𝒘 + 𝒙𝑡
𝑇𝒘∗ = 𝒘𝑻𝒘∗ − 𝒙𝑡

𝑇𝒘∗ ≥

𝒘𝑻𝒘∗ + 1 − 𝐿ℎ𝑖𝑛𝑔𝑒 𝒘∗, 𝒙𝑡  

• In the end: 𝒘𝑇𝒘∗ ≤ 𝑀 − 𝐿ℎ𝑖𝑛𝑔𝑒 𝒘∗, 𝑆  

• Similar argument as before shows that: 

𝑀 ≤ 𝑅2 𝒘∗
2

2
+ 2𝐿ℎ𝑖𝑛𝑔𝑒 𝒘∗, 𝑆  


