CSCI B609: "Foundations of Data Science"

Lecture 10/11: Random Walks and Markov Chains + ML Intro

Slides at http://grigory.us/data-science-class.html

Grigory Yaroslavtsev http://grigory.us

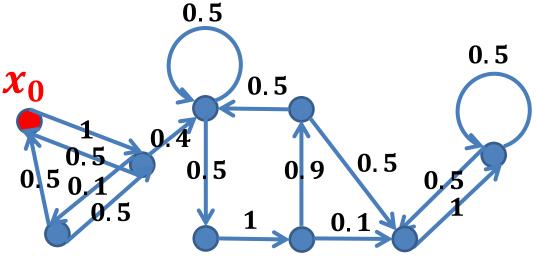
Project Example: Gradient Descent in TensorFlow

- Gradient Descent (will be covered in class)
- Adagrad: <u>http://www.magicbroom.info/Papers/DuchiHaSi10.pdf</u>
- Momentum (stochastic gradient descent + tweaks): <u>http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf</u>
- Adam (Adaptive + momentum): <u>http://arxiv.org/pdf/1412.6980.pdf</u>
- FTRL: <u>http://jmlr.org/proceedings/papers/v15/mcmahan11b/mc</u> <u>mahan11b.pdf</u>
- RMSProp: <u>http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture</u> <u>slides_lec6.pdf</u>

Random Walks and Markov Chains

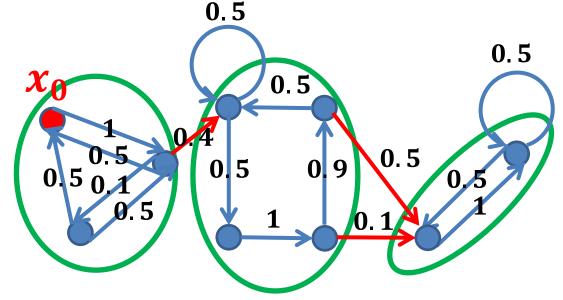
- Random walk:
 - Directed graph G(V, E)
 - Starting vertex $x_0 \in V$
 - Edge (*i*, *j*): probability p_{ij} of transition $i \rightarrow j$

$$- \forall i : \sum_j p_{ij} = 1$$



Strongly Connected Components

- **Def (Strongly Connected Component).** $S \subseteq V$ such that $\forall i, j \in S$ there exist paths $i \rightarrow j$ and $j \rightarrow i$
- SCC's form a partition of the vertex set
- Terminal SCC: no outgoing edges
- Long enough random walk → **Terminal SCC**



Matrix Form and Stationary Distribution

- $p_t = probability distribution over vertices at time t$
- $p_0 = (1,0,0,\dots,0)$
- $p_t P = p_{t+1}$
- P = transition matrix with entries p_{ij}
- If $t \to \infty$ then average of $p'_i s$ converges:

$$\frac{1}{t} \sum_{i=0}^{t-1} p_i \to \pi$$

- $\pi =$ stationary distribution of *P*
- π is unique and doesn't depend on x₀ if G is strongly connected
- Note: p_t for $t \to \infty$ doesn't always converge!

Stationary Distribution

• Long-term average:

$$a_t = \frac{1}{t} \sum_{i=0}^{t-1} p_i$$

• Thm. If G is strongly connected then $a_t \rightarrow \pi$:

$$-\pi P = \pi$$

$$-\sum_{i} \pi_{i} = 1$$

 $-\pi[P-I,\mathbf{1}] = [\mathbf{0},1]$

We will show that [P − I, 1] has rank n ⇒ there is a unique solution to π[P − I, 1] = [0, 1]

Stationary Distribution Theorem

- Thm. $n \times (n + 1)$ matrix $[P I, \mathbf{1}]$ has rank n
- $A = [P I, \mathbf{1}]$
- $Rank(A) < n \Rightarrow$ two lin. indep. solutions to Ax=0
- $\sum_{j} p_{ij} = 1 \Rightarrow \sum_{j} p_{ij} 1 = 0$ (row sums of A) - (1, 0) is a solution to $A\mathbf{x} = 0$
- Assume there is another solution $(\mathbf{x}, \boldsymbol{\alpha}) \perp (\mathbf{1}, 0)$ $-(P-I)\mathbf{x} + \boldsymbol{\alpha}\mathbf{1} = \mathbf{0}$ $-\forall i: \sum_{j} p_{ij}x_j - x_i + \boldsymbol{\alpha} = 0 \Rightarrow x_i = \sum_{j} p_{ij}x_j + \boldsymbol{\alpha}$
- $(x, \alpha) \perp (1, 0) \Rightarrow$ not all x_j are equal

Stationary Distribution Theorem Cont.

•
$$\forall i: x_i = \sum_j p_{ij} x_j + \boldsymbol{\alpha}$$

- $(\mathbf{x}, \alpha) \perp (\mathbf{1}, 0) \Rightarrow \text{not all } \mathbf{x}_j \text{ are equal}$
- $S = \{i: x_i = Max_{j=1}^n x_j\} = \text{set of max value coord.} \overline{S} \text{ is non-empty}$
- G strongly connected $\Rightarrow \exists edge(k,l): k \in S, l \in \overline{S}$
- $\Rightarrow x_k > \sum_j p_{kj} x_j \Rightarrow \alpha > 0$
- Symmetric argument with $S = \{i: x_i = Min_{j=1}^n x_j\}$
- $\Rightarrow x_{k'} < \sum_j p_{k'j} x_j \Rightarrow \alpha < 0$
- Contradiction so (1, 0) is the unique solution

Fundamental Theorem of Markov Chains

- Thm. If *P* is transition matrix of a strongly connected Markov Chain and $a_t = \frac{1}{t} \sum_{i=0}^{t-1} p_i$:
 - There exists a unique $\boldsymbol{\pi}: \boldsymbol{\pi} P = \boldsymbol{\pi}$
 - For any starting distribution: $\exists \lim_{t \to \infty} a_t = \pi$
- *a_t* is a probability vector
- After one step: $a_t \rightarrow a_t P$
- $a_t P a_t = \frac{1}{t} \left[\sum_{i=0}^{t-1} p_i P \right] \frac{1}{t} \left[\sum_{i=0}^{t-1} p_i \right] = \frac{1}{t} \left[\sum_{i=1}^{t} p_i \right] \frac{1}{t} \left[\sum_{i=0}^{t-1} p_i \right] = \frac{1}{t} \left(p_t p_0 \right)$ • $b_t = a_t P - a_t$ satisfies $||b_t||_1 \le \frac{2}{t} \to 0$

Fundamental Theorem of Markov Chains

- $n \times (n + 1)$ matrix $\mathbf{A} = [P I, \mathbf{1}]$ has rank n
- $n \times n$ matrix **B** = last *n* columns of **A**
- First *n* columns of *A* sum to zero \Rightarrow rank(*B*) = *n*
- c_t from $b_t = a_t P a_t$ by dropping first entry
- $a_t B = [c_t, 1] \Rightarrow a_t = [c_t, 1]B^{-1}$
- $b_t \to 0 \Rightarrow [c_t, 1] \to [\mathbf{0}, 1] \Rightarrow a_t \to [\mathbf{0}, 1]B^{-1}$
- Let $[0, 1]B^{-1} = \pi$.
- Since $a_t \rightarrow \pi$ vector π is a probability distribution
- $a_t[P-I] = b_t = 0 \Rightarrow \pi[P-I] = 0$

Intro to ML

- Classification problem
 - Instance space $X: \{0,1\}^d$ or \mathbb{R}^d (feature vectors)
 - Classification: come up with a mapping $X \rightarrow \{0,1\}$
- Formalization:
 - Assume there is a probability distribution D over X
 - $-c^*$ = "target concept" (set $c^* \subseteq X$ of positive instances)
 - Given labeled i.i.d. samples from *D* produce $h \subseteq X$
 - **Goal:** have **h** agree with c^* over distribution D
 - Minimize: $err_D(\mathbf{h}) = \Pr_D[\mathbf{h} \Delta \mathbf{c}^*]$
 - $-err_D(h)$ = "true" or "generalization" error

Intro to ML

• Training error

 $-S = labeled sampled (pairs (x, l), x \in X, l \in \{0,1\})$

- Training error: $err_{S}(h) = \frac{|S \cap (h \Delta c^{*})|}{|S|}$

- "Overfitting": low training error, high true error
- Hypothesis classes:
 - H: collection of subsets of X called hypotheses
 - If $X = \mathbb{R}$ could be all intervals $\{[a, b], a \leq b\}$
 - If $X = \mathbb{R}^d$ could be linear separators: $\{ \{ x \in \mathbb{R}^d | w \cdot x \ge w_0 \} | w \in \mathbb{R}^d, w_0 \in \mathbb{R} \}$
- If S is large enough (compared to some property of H) then overfitting doesn't occur

Overfitting and Uniform Convergence

• **PAC learning (agnostic)**: For $\epsilon, \delta > 0$ if $|S| \ge 1/2\epsilon^2(\ln|H| + \ln 2/\delta)$

then with probability $1 - \delta$:

$$\forall \boldsymbol{h} \in \mathrm{H}: |err_{S}(\boldsymbol{h}) - err_{D}(\boldsymbol{h})| \leq \boldsymbol{\epsilon}$$

- $x_j = r.v. (=1 \text{ if } h \text{ has error on } j \text{ -th sample in } S)$
- $\mathbb{E}[x_j] = err_D(\mathbf{h})$ and $err_S(\mathbf{h}) = \frac{1}{|S|} \sum_{j=1}^{|S|} x_j$
- Chernoff bound: $\Pr[|err_{S}(\boldsymbol{h}) - err_{D}(\boldsymbol{h})| > \boldsymbol{\epsilon}] \leq 2e^{-2|S|\boldsymbol{\epsilon}^{2}}$
- Union bound:

 $\Pr[\exists \boldsymbol{h} \in H: |err_{S}(\boldsymbol{h}) - err_{D}(\boldsymbol{h})| > \boldsymbol{\epsilon}] \leq 2|H|e^{-2|S|\boldsymbol{\epsilon}^{2}} \leq \boldsymbol{\delta}$

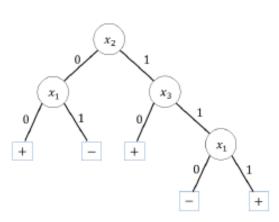
Examples

Learning disjunctions

 $-X = \{0,1\}^d$ target concept is OR: $\bigvee_{i \in T} x_i$

 $-|H| = 2^{d}$ so $|S| = 1/2\epsilon^{2}(d \ln 2 + \ln 2/\delta)$

- Occam's razor:
 - Target concept can be described by $\leq b$ bits - $|H| = 2^b$ so $|S| = 1/2\epsilon^2 (b \ln 2 + \ln 2/\delta)$
- Learning decision trees
 - $-X = \{0,1\}^d$
 - -|H| = trees with k nodes
 - Described with $b = O(k \log d)$ bits



Online Learning + Perceptron Algorithm

- For t = 1, 2, ...,
 - Algorithm given $x_t \in X$ and asked to predict l_t
 - Algorithm is told $c^*(x_t)$ and charged if $c^*(x_t) \neq l_t$
- Linear separator given by $oldsymbol{w}^* \in \mathbb{R}^d$
 - $\{x \in \mathbb{R}^d | x^T w^* \ge 1\} = \text{positive examples}$ $\{x \in \mathbb{R}^d | x^T w^* \le -1\} = \text{negative examples}$

 marg

 ∞

- $x^T w^* / ||w^*||_2$ = distance to hyperplane $x^T w^* = 0$
- $\gamma = 1/||w^*||_2 =$ "margin" of the separator

Perceptron Algorithm

- Set w = 0 then for t = 1, 2, ...:
 - Given example x_t predict sgn $(x_t^T w)$
 - If mistake was made then update:
 - If x_t was positive: $w \leftarrow w + x_t$
 - If x_t was negative: $w \leftarrow w x_t$
- Thm. Perceptron makes $\leq R^2 ||\mathbf{w}^*||_2^2$ mistakes where $R = \max_t ||\mathbf{x}_t||.$
- **Proof:** invariants $w^T w^*$ and $||w||^2$
- For each mistake $w^T w^* \rightarrow w^T w^* + 1$
 - On positive: $(w + x_t)^T w^* = w^T w^* + x_t^T w^* \ge w^T w^* + 1$
 - On negative: $(w x_t)^T w^* = w^T w^* x_t^T w^* \ge w^T w^* + 1$

Perceptron Analysis cont.

- On each mistake $||w||_2^2$ increase by $\leq R^2$
- On positive: $(w + x_t)^T (w + x_t) = ||w||_2^2 + 2x_t^T w + ||x_t||_2^2 \le ||w||_2^2 + ||x_t||_2^2 = ||w||_2^2 + R^2$
- On negative: $(\boldsymbol{w} \boldsymbol{x}_t)^T (\boldsymbol{w} \boldsymbol{x}_t) = ||\boldsymbol{w}||_2^2 2\boldsymbol{x}_t^T \boldsymbol{w} + ||\boldsymbol{x}_t||_2^2 \le ||\boldsymbol{w}||_2^2 + ||\boldsymbol{x}_t||_2^2 = ||\boldsymbol{w}||_2^2 + R^2$
- *M* mistakes: $w^T w^* \ge M$, $||w||_2^2 \le MR^2$ or $||w||_2 \le \sqrt{M}R$

• Since
$$\frac{w^T w^*}{||w^*||_2} \le ||w||_2$$
 we have:
 $\frac{M}{||w^*||_2} \le \sqrt{MR} \Rightarrow \sqrt{M} \le R ||w^*||_2 \Rightarrow M \le R^2 ||w^*||_2^2$

Perceptron with noisy data

- What if there is no perfect separator?
- Hinge loss of **w**^{*}:

- On positive x_t : max(0,1 - $x_t^T w^*$)

- On negative x_t : max $(0, 1 + x_t^T w^*)$

- Sample hinge loss L_{hinge}(w^{*}, S) = sum of hinge losses over all samples in S
- Thm. #mistakes of Perceptron is at most:

$$\min_{\boldsymbol{w}^*} \left(R^2 ||\boldsymbol{w}^*| \Big|_2^2 + 2L_{hinge}(\boldsymbol{w}^*, S) \right)$$

Proof of noisy perceptron

- As before we have $||w||_2^2 \le MR^2$
- On positive: $(w + x_t)^T w^* = w^T w^* + x_t^T w^* \ge w^T w^* + 1 L_{hinge}(w^*, x_t)$
- On negative: $(w + x_t)^T w^* = w^T w^* x_t^T w^* \ge w^T w^* + 1 L_{hinge}(w^*, x_t)$
- In the end: $\boldsymbol{w}^T \boldsymbol{w}^* \leq M L_{hinge}(\boldsymbol{w}^*, S)$
- Similar argument as before shows that: $M \le R^2 ||\boldsymbol{w}^*||_2^2 + 2L_{hinge}(\boldsymbol{w}^*, S)$