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Project Example:
Gradient Descent in TensorFlow

Gradient Descent (will be covered in class)

Adagrad:
http://www.magicbroom.info/Papers/DuchiHaSi10.pdf

Momentum (stochastic gradient descent + tweaks):
http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf

Adam (Adaptive + momentum):
http://arxiv.org/pdf/1412.6980.pdf

FTRL:

http://imlr.org/proceedings/papers/vl15/mcmahanllb/mc
mahanllb.pdf

RMSProp:
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture

slides lec6.pdf
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Random Walks and Markov Chains

 Random walk:
— Directed graph G(V, E)
— Starting vertex xo € V
— Edge (i, j): probability p;; of transition i — j
—Vi:Xipi =1




Strongly Connected Components

Def (Strongly Connected Component). S € V such that
Vi,j € S there exist pathsi —» jandj — i

SCC’s form a partition of the vertex set
Terminal SCC: no outgoing edges
Long enough random walk — Terminal SCC




Matrix Form and Stationary Distribution

* p; = probability distribution over vertices at time t
* p, = (1,0,0,...,0)

* PP = DPria

* P =transition matrix with entries p;;

* If £ - oo then average of p;s converges:

21 0 Pi— T
* 1T = stationary dlstrlbutlon of P

* 1T is unique and doesn’t depend on x if G is
strongly connected

* Note: p; fort — oo doesn’t always converge!



Stationary Distribution

* Long-term average:

a; = %Z":é Pi
* Thm. If G is strongly connected then a; — T:
—nP =™
-ym=1
—n[P —1,1] = [0, 1]

* We will show that [P — I, 1] has rank n = there is a
unique solutionto [P — I,1] = [0, 1]



Stationary Distribution Theorem

Thm.n X (n + 1) matrix [P — I,1] hasrank n
A=[P-11
Rank(A) < n = two lin. indep. solutions to Ax=0
2.ipij = 1> 2;p;; —1 =0 (row sums of A)
—(1,0) is a solution to Ax =0

Assume there is another solution (x, ) L (1,0)
—-(P-Dx+a1=0
— Vi: Z]pux] — X +a=0>= X; = Z]pl]x] +

(x,a) L (1,0) = not all x; are equal



Stationary Distribution Theorem Cont.
Vi: x; = 2ipijxj + &

(x,a) L (1,0) = not all x; are equal

S = {i: x; = Max;; 1x]} = set of max value coord.
— S is non-empty

G strongly connected = J edge (k,1):k €S, l €S
= X > ijijj > a >0

Symmetric argument with § = {i: X; = Mm 1x]}
= Xpr < ijkrjxj >a<0

Contradiction so (1, 0) is the unique solution



Fundamental Theorem of Markov Chains

* Thm. If P is transition matrix of a stgongly
connected Markov Chain and a; = - ),;—g p,

— There existsauniquem: TP =1
— For any starting distribution: lima; = &

t—> oo

* a; is a probability vector
* After one step: a; — a;P

¢« aq,P—a, =~ [Zt_cl) Pip] ~ % Zizopi] =
%[ §=1pl [Zl Opl :%(pt_p())

2
* b, = a,P — a, satisfies ||b;||; < -—0




Fundamental Theorem of Markov Chains

e nX(n+1)matrix A =[P —1,1] hasrankn

* n X nmatrix B =last n columns of A

* First n columns of A sum to zero = rank(B) = n
e ¢; from b; = a;P — a; by dropping first entry
 ,B =]c;, 1] = a; = [c;, 1]B~?

* by > 0>]c,1] > [0,1] = a, » [0,1]B71

e Let[0,1]B~ ! = m.

* Since a; — 1 vector 1 is a probability distribution
e a;/P—1l=b;,=0=>m|P—-1]=0



Intro to ML

e Classification problem

— Instance space X: {0,1}% or R? (feature vectors)
— Classification: come up with a mapping X — {0,1}
* Formalization:
— Assume there is a probability distribution D over X
— ¢*= “target concept” (set ¢* € X of positive instances)
— Given labeled i.i.d. samples from D produce h € X
— Goal: have h agree with ¢* over distribution D
— Minimize: errp(h) = Prp[h A ¢*]
— errp(h) = “true” or “generalization” error



Intro to ML

Training error

— S =labeled sampled (pairs (x,1),x € X,l € {0,1})
ISN(h A ¢*)]
N

“Overfitting”: low training error, high true error

Hypothesis classes:

— H: collection of subsets of X called hypotheses

* If X = R could be all intervals {[a, b],a < b}
* If X = R? could be linear separators:

{{x € IRd|w x> wy}lw € R, w, € IR}

— Training error: errs(h) =

If S is large enough (compared to some property of
H) then overfitting doesn’t occur



Overfitting and Uniform Convergence

* PAC learning (agnostic): Fore¢,0 > 0 if
S| = 1/2e*(In|H| + 1In2/6)
then with probability 1 — 0.
vh € H: |lerr¢(h) — errp(h)| < €

* xj =rVv. (=1if h has error on j-th sample in §)
E[x;] = errp(h) and errg(h) = —lel

j= 1xJ
e Chernoff bound:
Pr[lerr¢(h) — errp(h)| > €] < 2e~2ISI€”
* Union bound:
Pr|3h € H: |errs(h) —errp(h)| > €] < 2|H|e 251" < &




Examples

* Learning disjunctions
— X ={0,1}“ target concept is OR: V7 X;
—|H| =2%s0|S| =1/2€%(d In2 +1n2/8)
* Occam’s razor:
— Target concept can be described by < b bits
—|H| =2%s0|S| =1/2€?(b In2 +1n2/6)
* Learning decision trees
— X ={0,1}4 PN
— |H| = trees with k nodes /\ /N
— Described with b = O(klogd) bits = ¢ \



Online Learning + Perceptron Algorithm

Fort =1,2, ...,

— Algorithm given x; € X and asked to predict [,

— Algorithm is told ¢*(x;) and charged if ¢*(x;) #+ l;
e Linear separator given by w* € R?

{x € ]Rd‘xTw* > 1} = positive examples
{x € ]Rd‘xTW* < —1} = negative examples
xTw*/

y =1/|lw*]

lw*| , = distance to hyperplane x"w* = 0 o

)= “margin” of the separator



Perceptron Algorithm

e Setw=0thenfort =1,2,...:
— Given example x, predict sgn(x; w)
— If mistake was made then update:

* If x; was positive: w « w + x;
* If x; was negative: w « w — x;

mlstakes where
R = max th||

T

* For each mistake wiw* - wiw* + 1
— On positive: (W + x.)Tw* = wiw* + xfw* > wiw* + 1
— On negative: (W — x.)Tw* = wiw* —xIw* > wiw* + 1



Perceptron Analysis cont.

2
On each mistake ||w|‘ increase by < R?

On posmve (w + xt)T(w + x;) = HWH + 2xTw +
x| < [Iwl]; +|Ixel]S = [Iwl], + R?
On negatlve (w xt)T(w xt)—‘lwl‘ —2xTw +
11| < [1wl]; + |Ixel]; = [Iwl], + R?

M mistakes: wiw* > M, “W”z < MR? or Hw||2 <+MR

T

w! w*
< |lw]|. we have:

Since
M




Perceptron with noisy data

 What if there is no perfect separator?

* Hinge loss of w™:
— On positive x;: max(0,1 — xI w*)
— On negative x;: max(0,1 + xI w*)

* Sample hinge loss Ly ge (W, S) = sum of
hinge losses over all samplesin S

 Thm. #mistakes of Perceptron is at most:

2
min,,,- (R2||w* , + 2Lhinge(w*,5))




Proof of noisy perceptron

2
As before we have ||w|‘2 < MR?

Tw* + xIw* >

On positive: (W + x.)'w* =w
wiw +1 - Lhinge(W*»xt)

On negative: (W + x,)Tw* = wiw* — xIw* >

wiw* +1 - Lhinge(W*:xt)

Inthe end: W'w* < M — Lyjnge(W", S)
Similar argument as before shows that:
2
M < R?||W*|| + 2Lpinge (W, S)




