
CSCI B609:
“Foundations of Data Science”

Grigory Yaroslavtsev
http://grigory.us

Lecture 10/11: Random Walks and
Markov Chains + ML Intro

Slides at http://grigory.us/data-science-class.html

http://grigory.us/
http://grigory.us/data-science-class.html
http://grigory.us/data-science-class.html
http://grigory.us/data-science-class.html
http://grigory.us/data-science-class.html
http://grigory.us/data-science-class.html

Project Example:
Gradient Descent in TensorFlow

• Gradient Descent (will be covered in class)
• Adagrad:

http://www.magicbroom.info/Papers/DuchiHaSi10.pdf
• Momentum (stochastic gradient descent + tweaks):

http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf
• Adam (Adaptive + momentum):

http://arxiv.org/pdf/1412.6980.pdf
• FTRL:

http://jmlr.org/proceedings/papers/v15/mcmahan11b/mc
mahan11b.pdf

• RMSProp:
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_
slides_lec6.pdf

http://www.magicbroom.info/Papers/DuchiHaSi10.pdf
http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf
http://arxiv.org/pdf/1412.6980.pdf
http://jmlr.org/proceedings/papers/v15/mcmahan11b/mcmahan11b.pdf
http://jmlr.org/proceedings/papers/v15/mcmahan11b/mcmahan11b.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Random Walks and Markov Chains

• Random walk:
– Directed graph 𝑮 𝑽, 𝑬

– Starting vertex 𝒙𝟎 ∈ 𝑽

– Edge 𝑖, 𝑗 : probability 𝑝𝑖𝑗 of transition 𝑖 → 𝑗

– ∀𝑖: 𝑝𝑖𝑗 = 1𝑗

𝒙𝟎
𝟏

𝟎. 𝟓
𝟎. 𝟏

𝟎. 𝟒

𝟎. 𝟓
𝟎. 𝟓

𝟎. 𝟓

𝟎. 𝟓

𝟏

𝟎. 𝟓

𝟎. 𝟏

𝟎. 𝟗

𝟎. 𝟓

𝟎. 𝟓
𝟏

𝟎. 𝟓

Strongly Connected Components
• Def (Strongly Connected Component). 𝑆 ⊆ 𝑉 such that

∀𝑖, 𝑗 ∈ 𝑆 there exist paths 𝑖 → 𝑗 and 𝑗 → 𝑖

• SCC’s form a partition of the vertex set

• Terminal SCC: no outgoing edges

• Long enough random walk → Terminal SCC

𝒙𝟎
𝟏

𝟎. 𝟓
𝟎. 𝟏

𝟎. 𝟒

𝟎. 𝟓
𝟎. 𝟓

𝟎. 𝟓

𝟎. 𝟓

𝟏

𝟎. 𝟓

𝟎. 𝟏

𝟎. 𝟗

𝟎. 𝟓

𝟎. 𝟓
𝟏

𝟎. 𝟓

Matrix Form and Stationary Distribution

• 𝒑𝒕 = probability distribution over vertices at time 𝒕

• 𝒑0 = 1,0,0, … , 0

• 𝒑𝒕𝑃 = 𝒑𝒕+𝟏

• 𝑃 = transition matrix with entries 𝑝𝑖𝑗

• If 𝒕 → ∞ then average of 𝒑𝑖
′𝑠 converges:

1

𝒕
 𝒑𝒊

𝒕−𝟏
𝒊=0 → 𝝅

• 𝝅 = stationary distribution of 𝑃

• 𝝅 is unique and doesn’t depend on 𝑥0 if G is
strongly connected

• Note: 𝒑𝒕 for 𝒕 → ∞ doesn’t always converge!

Stationary Distribution

• Long-term average:

𝑎𝒕 =
1

𝒕
 𝒑𝒊

𝒕−𝟏
𝒊=0

• Thm. If G is strongly connected then 𝑎𝒕 → 𝝅:

– 𝝅𝑃 = 𝝅

– 𝝅𝑖 = 1𝑖

– 𝝅 𝑃 − 𝐼, 𝟏 = ,𝟎, 1-

• We will show that 𝑃 − 𝐼, 𝟏 has rank 𝑛 ⇒ there is a
unique solution to 𝝅 𝑃 − 𝐼, 𝟏 = ,𝟎, 1-

Stationary Distribution Theorem
• Thm. 𝑛 × 𝑛 + 1 matrix 𝑃 − 𝐼, 𝟏 has rank 𝑛

• 𝐴 = 𝑃 − 𝐼, 𝟏

• Rank(A) < 𝑛 ⇒ two lin. indep. solutions to Ax=0

• 𝑝𝑖𝑗 = 1𝑗 ⇒ 𝑝𝑖𝑗𝑗 − 1 = 0 (row sums of 𝐴)

– 𝟏, 0 is a solution to Ax = 0

• Assume there is another solution 𝒙, 𝜶 ⊥ 𝟏, 0

– 𝑃 − 𝐼 𝒙 + 𝜶𝟏 = 𝟎

– ∀𝑖: 𝑝𝑖𝑗𝑥𝑗 − 𝑥𝑖 + 𝜶 = 0𝑗 ⇒ 𝑥𝑖 = 𝑝𝑖𝑗𝑥𝑗 + 𝜶𝑗

• 𝒙, 𝜶 ⊥ 𝟏, 0 ⇒ not all 𝒙𝑗 are equal

Stationary Distribution Theorem Cont.

• ∀𝑖: 𝑥𝑖 = 𝑝𝑖𝑗𝑥𝑗 + 𝜶𝑗

• 𝒙, 𝛼 ⊥ 𝟏, 0 ⇒ not all 𝒙𝑗 are equal

• 𝑺 = 𝑖: 𝑥𝑖 = 𝑀𝑎𝑥𝑗=1
𝑛 𝑥𝑗 = set of max value coord.

– 𝑺 is non-empty

• 𝐺 strongly connected ⇒ ∃ 𝑒𝑑𝑔𝑒 𝑘, 𝑙 : 𝑘 ∈ 𝑺, 𝑙 ∈ 𝑺

• ⇒ 𝑥𝑘 > 𝑝𝑘𝑗𝑥𝑗𝑗 ⇒ 𝜶 > 0

• Symmetric argument with 𝑺 = 𝑖: 𝑥𝑖 = 𝑀𝑖𝑛𝑗=1
𝑛 𝑥𝑗

• ⇒ 𝑥𝑘′ < 𝑝𝑘′𝑗𝑥𝑗𝑗 ⇒ 𝜶 < 0

• Contradiction so 𝟏, 0 is the unique solution

Fundamental Theorem of Markov Chains

• Thm. If 𝑃 is transition matrix of a strongly
connected Markov Chain and 𝑎𝒕 =

1

𝒕
 𝒑𝒊

𝒕−𝟏
𝒊=0 :

– There exists a unique 𝝅: 𝝅𝑃 = 𝝅

– For any starting distribution: ∃ lim
𝒕→∞

𝑎𝒕 = 𝝅

• 𝑎𝒕 is a probability vector
• After one step: 𝑎𝒕 → 𝑎𝒕𝑃

• 𝑎𝒕𝑃 − 𝑎𝒕 =
1

𝒕
 𝒑𝑖𝑃

𝒕−1
𝑖=0 −

1

𝒕
 𝒑𝑖

𝒕−1
𝑖=0 =

1

𝒕
 𝒑𝑖

𝒕
𝑖=1 −

1

𝒕
 𝒑𝑖

𝒕−1
𝑖=0 =

1

𝒕
(𝒑𝒕 − 𝒑0)

• 𝑏𝒕 = 𝑎𝒕𝑃 − 𝑎𝒕 satisfies | 𝑏𝒕 |1 ≤
2

𝒕
→ 0

Fundamental Theorem of Markov Chains

• 𝑛 × 𝑛 + 1 𝑚𝑎𝑡𝑟𝑖𝑥 𝑨 = 𝑃 − 𝐼, 𝟏 has rank 𝑛

• 𝑛 × 𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑩 = last 𝑛 columns of 𝑨

• First 𝑛 columns of 𝑨 sum to zero ⇒ 𝑟𝑎𝑛𝑘 𝑩 = 𝑛

• 𝑐𝒕 from 𝑏𝒕 = 𝑎𝒕𝑃 − 𝑎𝒕 by dropping first entry

• 𝑎𝒕𝐵 = 𝑐𝒕, 1 ⇒ 𝑎𝒕 = 𝑐𝒕, 1 𝐵−1

• 𝑏𝒕 → 0 ⇒ 𝑐𝒕, 1 → 𝟎, 1 ⇒ 𝑎𝒕 → 𝟎, 1 𝐵−1

• Let 𝟎, 1 𝐵−1 = 𝝅.

• Since 𝑎𝒕 → 𝝅 vector 𝝅 is a probability distribution

• 𝑎𝒕 𝑃 − 𝐼 = 𝑏𝒕 = 0 ⇒ 𝝅 𝑃 − 𝐼 = 0

Intro to ML

• Classification problem

– Instance space 𝑋: 0,1 𝒅 or ℝ𝒅 (feature vectors)

– Classification: come up with a mapping 𝑋 → *0,1+

• Formalization:

– Assume there is a probability distribution 𝐷 over 𝑋

– 𝒄∗= “target concept” (set 𝒄∗ ⊆ 𝑋 of positive instances)

– Given labeled i.i.d. samples from 𝐷 produce 𝒉 ⊆ 𝑋

– Goal: have 𝒉 agree with 𝒄∗ over distribution 𝐷

– Minimize: 𝑒𝑟𝑟𝐷 𝒉 = Pr𝐷,𝒉 Δ 𝒄∗-

– 𝑒𝑟𝑟𝐷 𝒉 = “true” or “generalization” error

Intro to ML
• Training error

– 𝑆 = labeled sampled (pairs 𝑥, 𝑙 , 𝑥 ∈ 𝑋, 𝑙 ∈ *0,1+)

– Training error: 𝑒𝑟𝑟𝑆 𝒉 =
𝑆∩ 𝒉 Δ 𝒄∗

𝑆

• “Overfitting”: low training error, high true error

• Hypothesis classes:
– H: collection of subsets of 𝑋 called hypotheses

• If 𝑋 = ℝ could be all intervals 𝑎, 𝑏 , 𝑎 ≤ 𝑏

• If 𝑋 = ℝ𝑑 could be linear separators:

𝒙 ∈ ℝ𝑑 𝒘 ⋅ 𝒙 ≥ 𝑤0 |𝒘 ∈ ℝ𝑑 , 𝑤0 ∈ ℝ

• If 𝑆 is large enough (compared to some property of
H) then overfitting doesn’t occur

Overfitting and Uniform Convergence
• PAC learning (agnostic): For 𝜖, 𝛿 > 0 if

𝑆 ≥ 1/2𝜖2(ln 𝐻 + ln 2/𝛿)

then with probability 1 − 𝛿:
∀𝒉 ∈ H: 𝑒𝑟𝑟𝑆 𝒉 − 𝑒𝑟𝑟𝐷 𝒉 ≤ 𝜖

• 𝑥𝑗 = r.v. (=1 if 𝒉 has error on 𝑗-th sample in 𝑆)

• 𝔼,𝑥𝑗- = 𝑒𝑟𝑟𝐷 𝒉 and 𝑒𝑟𝑟𝑆 𝒉 =
1

𝑆
 𝑥𝑗

𝑆
𝑗=1

• Chernoff bound:

Pr 𝑒𝑟𝑟𝑆 𝒉 − 𝑒𝑟𝑟𝐷 𝒉 > 𝜖 ≤ 2𝑒−2 𝑆 𝜖2

• Union bound:

Pr ∃𝒉 ∈ 𝐻: 𝑒𝑟𝑟𝑆 𝒉 − 𝑒𝑟𝑟𝐷 𝒉 > 𝜖 ≤ 2 𝐻 𝑒−2 𝑆 𝜖2
≤ 𝛿

Examples

• Learning disjunctions
– 𝑋 = 0,1 𝒅 target concept is OR: ∨𝑖∈𝑇 𝑥𝑖

– 𝐻 = 2𝒅 so 𝑆 = 1/2𝜖2(𝑑 ln 2 + ln 2/𝛿)

• Occam’s razor:
– Target concept can be described by ≤ 𝑏 bits

– 𝐻 = 2𝑏 so 𝑆 = 1/2𝜖2(𝑏 ln 2 + ln 2/𝛿)

• Learning decision trees
– 𝑋 = 0,1 𝒅

– 𝐻 = trees with k nodes

– Described with 𝑏 = 𝑂(𝑘 log 𝑑) bits

Online Learning + Perceptron Algorithm

• For 𝑡 = 1,2, … ,

– Algorithm given 𝑥𝑡 ∈ 𝑋 and asked to predict 𝑙𝑡

– Algorithm is told 𝒄∗(𝑥𝑡) and charged if 𝒄∗ 𝑥𝑡 ≠ 𝑙𝑡

• Linear separator given by 𝒘∗ ∈ ℝ𝑑

𝒙 ∈ ℝ𝑑 𝒙𝑇𝒘∗ ≥ 1 = positive examples

𝒙 ∈ ℝ𝑑 𝒙𝑇𝒘∗ ≤ −1 = negative examples

• 𝒙𝑇𝒘∗/ 𝒘∗
𝟐

 = distance to hyperplane 𝒙𝑇𝒘∗ = 0

• 𝛾 = 1/ 𝒘∗
𝟐

= “margin” of the separator

Perceptron Algorithm

• Set 𝒘 = 0 then for 𝑡 = 1,2, … :
– Given example 𝑥𝑡 predict sgn 𝒙𝑡

𝑇𝒘
– If mistake was made then update:

• If 𝑥𝑡 was positive: 𝒘 ← 𝒘 + 𝒙𝒕
• If 𝑥𝑡 was negative: 𝒘 ← 𝒘 − 𝒙𝒕

• Thm. Perceptron makes ≤ 𝑅2 𝒘∗
2

2
 mistakes where

𝑅 = max
𝑡

 𝒙𝑡 .

• Proof: invariants 𝒘𝑻𝒘∗ and 𝒘
𝟐

• For each mistake 𝒘𝑻𝒘∗ → 𝒘𝑻𝒘∗ + 1
– On positive: 𝒘 + 𝒙𝑡

𝑇𝒘∗ = 𝒘𝑻𝒘∗ + 𝒙𝑡
𝑇𝒘∗ ≥ 𝒘𝑻𝒘∗ + 1

– On negative: 𝒘 − 𝒙𝑡
𝑇𝒘∗ = 𝒘𝑻𝒘∗ − 𝒙𝑡

𝑇𝒘∗ ≥ 𝒘𝑻𝒘∗ + 1

Perceptron Analysis cont.
• On each mistake 𝒘

2

2
 increase by ≤ 𝑅2

• On positive: 𝒘 + 𝒙𝑡
𝑇 𝒘 + 𝒙𝑡 = 𝒘

2

2
+ 2𝒙𝑡

𝑇𝒘 +

𝒙𝑡 2

2
≤ 𝒘

2

2
+ 𝒙𝑡 2

2
= 𝒘

2

2
+ 𝑅2

• On negative: 𝒘 − 𝒙𝑡
𝑇 𝒘 − 𝒙𝑡 = 𝒘

2

2
− 2𝒙𝑡

𝑇𝒘 +

𝒙𝑡 2

2
≤ 𝒘

2

2
+ 𝒙𝑡 2

2
= 𝒘

2

2
+ 𝑅2

• 𝑀 mistakes: 𝒘𝑻𝒘∗ ≥ 𝑀, 𝒘
2

2
≤ 𝑀𝑅2 or 𝒘

2
≤ 𝑀𝑅

• Since
𝒘𝑻𝒘∗

𝒘∗
2

≤ 𝒘
2

 we have:

𝑀

𝒘∗
2

≤ 𝑀𝑅 ⇒ 𝑀 ≤ 𝑅 𝒘∗
2

⇒ 𝑀 ≤ 𝑅2 𝒘∗
2

2

Perceptron with noisy data

• What if there is no perfect separator?

• Hinge loss of 𝒘∗:
– On positive 𝑥𝑡: max 0,1 − 𝒙𝑡

𝑇𝒘∗

– On negative 𝑥𝑡: max 0,1 + 𝒙𝑡
𝑇𝒘∗

• Sample hinge loss 𝐿ℎ𝑖𝑛𝑔𝑒 𝒘∗, 𝑆 = sum of
hinge losses over all samples in 𝑆

• Thm. #mistakes of Perceptron is at most:

min𝒘∗ 𝑅2||𝒘∗
2

2
+ 2𝐿ℎ𝑖𝑛𝑔𝑒 𝒘∗, 𝑆

Proof of noisy perceptron

• As before we have 𝒘
2

2
≤ 𝑀𝑅2

• On positive: 𝒘 + 𝒙𝑡
𝑇𝒘∗ = 𝒘𝑻𝒘∗ + 𝒙𝑡

𝑇𝒘∗ ≥

𝒘𝑻𝒘∗ + 1 − 𝐿ℎ𝑖𝑛𝑔𝑒 𝒘∗, 𝒙𝑡

• On negative: 𝒘 + 𝒙𝑡
𝑇𝒘∗ = 𝒘𝑻𝒘∗ − 𝒙𝑡

𝑇𝒘∗ ≥

𝒘𝑻𝒘∗ + 1 − 𝐿ℎ𝑖𝑛𝑔𝑒 𝒘∗, 𝒙𝑡

• In the end: 𝒘𝑇𝒘∗ ≤ 𝑀 − 𝐿ℎ𝑖𝑛𝑔𝑒 𝒘∗, 𝑆

• Similar argument as before shows that:

𝑀 ≤ 𝑅2 𝒘∗
2

2
+ 2𝐿ℎ𝑖𝑛𝑔𝑒 𝒘∗, 𝑆

