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Faster Power Method 
• PM drawback: 𝐴𝑇𝐴 is dense even for sparse 𝐴 

• Pick random Gaussian 𝒙 and compute 𝐵𝑘𝒙 

• 𝒙 =  𝑐𝑖𝒗𝑖
𝒅
𝑖=1 (augment 𝒗𝒊’s to o.n.b. if 𝑟 < 𝒅) 

• 𝐵𝑘𝒙 ≈ 𝜎1
2𝑘𝒗1𝒗1

𝑇  𝑐𝑖𝒗𝑖
𝑑
𝑖=1 = 𝜎1

2𝑘𝑐1𝒗1 

𝐵𝑘𝒙 = 𝐴𝑇𝐴 𝐴𝑇𝐴 … (𝐴𝑇𝐴)𝒙 

• Theorem:  If 𝒙 is unit ℝ𝒅-vector, 𝒙𝑇𝒗1 ≥ 𝜹: 

– 𝑉 = subspace spanned by 𝒗𝑖
′𝑠 for 𝜎𝑗 ≥ 1 − 𝝐 𝜎1 

– 𝒘 = unit vector after 𝑘 =
1

2𝝐
ln
1

𝝐𝜹
 iterations of PM 

⇒ 𝒘 has a component at most 𝝐 orthogonal to 𝑉 

 



Faster Power Method: Analysis 

• 𝐴 =  𝜎𝑖𝒖𝑖𝒗𝑖
𝑇𝑟

𝑖=1  and 𝒙 =  𝑐𝑖𝒗𝑖
𝒅
𝑖=1  

• 𝐵𝑘𝒙 =  𝜎𝑖
2𝑘𝒗𝑖𝒗𝑖

𝑇𝒅
𝑖=1  𝑐𝑗𝒗𝑗

𝒅
𝑗=1 =  𝜎𝑖

2𝑘𝑐𝑖𝒗𝑖
𝒅
𝑖=1  

𝐵𝑘𝒙
2

2
=  𝜎𝑖

2𝑘𝑐𝑖𝒗𝑖

𝒅

𝑖=1
2

2

= 𝜎𝑖
4𝑘𝑐𝑖
2

𝒅

𝑖=1

≥ 𝜎1
4𝑘𝑐1
2 ≥ 𝜎𝑖

4𝑘𝛿2  

• (Squared ) component orthogonal to 𝑉 is 

 𝜎𝑖
4𝑘𝑐𝑖
2

𝒅

𝑖=𝑚+1

≤ 1 − 𝝐 4𝑘𝜎1
4𝑘  𝑐𝑖

2

𝒅

𝑖=𝑚+1

≤ 1 − 𝝐 4𝑘𝜎1
4𝑘 

• Component of 𝒘 ⊥ 𝑉 ≤ 1 − 𝝐 2𝑘/𝜹 ≤ 𝝐 

 



Choice of 𝒙 

• 𝒚 random spherical Gaussian with unit variance 

• 𝒙 =
𝒚

𝒚
𝟐

: 

𝑃𝑟 𝒙𝑻𝒗 ≤
1

20 𝒅
≤
1

10
+ 3𝑒−𝒅/64 

• 𝑃𝑟 𝒚
𝟐
≥ 𝟐 𝒅 ≤ 3𝑒−𝒅/64 (Gaussian Annulus) 

• 𝒚𝑻𝒗 ∼ 𝑁 0,1 ⇒ Pr 𝒚𝑻𝒗
2
≤
1

10
≤
1

10
  

• Can set 𝜹 =
1

20 𝒅
 in the “faster power method” 



Singular Vectors and Eigenvectors 

• Right singular vectors are eigenvectors of 𝐴𝑇𝐴 

• 𝜎𝑖
2 are eigenvalues of 𝐴𝑇𝐴 

• Left singular vectors are eigenvectors of 𝐴𝐴𝑇 

• 𝐴𝑇𝐴 satisfies ∀𝒙:  𝒙𝑇𝐵𝒙 ≥ 0 

– 𝐵 =  𝜎𝑖
2𝒗𝑖𝒗𝑖

𝑇
𝑖  

– ∀𝒙: 𝒙𝑇𝒗𝑖𝒗𝑖
𝑇𝒙 = (𝒙𝑇𝒗𝑖)

2≥ 0    

– Such matrices are called positive semi-definite 

• Any p.s.d matrix can be decomposed as 𝐴𝑇𝐴  

 



Application of SVD: Centering Data 

• Minimize sum of squared distances from 𝑨𝒊 to 𝑆𝑘  

• SVD: best fitting 𝑆𝑘 if data is centered 

• What if not? 

• Thm. 𝑆𝑘 that minimizes squared distance goes 
through centroid of the point set: 

1

𝑛
 𝑨𝒊 

• Will only prove for 𝑘 = 1, analogous proof for 
arbitrary 𝑘 (see textbook) 

 



Application of SVD: Centering Data 
• Thm. Line that minimizes squared distance goes through the centroid 
• Line: ℓ = 𝒂 + 𝜆𝒗; distance 𝑑𝑖𝑠𝑡(𝑨𝒊, ℓ) 

• 𝑨𝒊 − 𝒂 2
2
= 𝑑𝑖𝑠𝑡 𝑨𝒊, ℓ

2 + 𝒗, 𝑨𝒊
2 

• Center so that  𝑨𝒊
𝑛
𝑖=1 = 𝟎 by subtracting the centroid 

•  𝑑𝑖𝑠𝑡 𝑨𝒊, ℓ
2𝑛

𝑖 =  ( 𝑨𝒊 − 𝒂 2
2
− 𝒗, 𝑨𝒊

2)𝑛
𝑖=1  

= ( 𝑨𝒊 2
2
+ 𝒂

2

2
− 2〈𝑨𝒊, 𝒂〉 − 𝒗, 𝑨𝒊

2)

𝑛

𝑖=1

 

= 𝑨𝒊 2
2
+ 𝑛 𝒂

2

2
− 2〈 𝑨𝒊

𝑛

𝑖=1

, 𝒂〉 − 𝒗,𝑨𝒊
2

𝑛

𝑖=1

𝑛

𝑖=1

 

= 𝑨𝒊 2
2
+ 𝑛 𝒂

2

2
− 𝒗,𝑨𝒊

2

𝑛

𝑖=1

𝑛

𝑖=1

 

• Minimized when 𝒂 = 𝟎 
 
 

 



Principal Component Analysis 

• 𝒏 × 𝒅 matrix: customers×movies preference 

• 𝒏 = #customers, 𝒅 = #movies 

• 𝐴𝑖𝑗 = how much customer 𝑖 likes movie 𝑗 

• Assumption: 𝐴𝑖𝑗  can be described with 𝑘 factors 

– Customers and movies: vectors in 𝒖𝒊 and 𝒗𝒊 ∈ ℝ
𝑘 

– 𝐴𝑖𝑗 = 〈𝒖𝒊, 𝒗𝒋〉 

• Solution: 𝐴𝑘  

 



Class Project 
• Survey of 3-5 research papers 

– Closely related to the topics of the class 
• Algorithms for high-dimensional data 
• Fast algorithms for numerical linear algebra 
• Algorithms for machine learning and/or clustering 
• Algorithms for streaming and massive data 

– Office hours if you need suggestions 
– Individual (not a group) project 
– 1-page Proposal Due: October 31, 2016 at 23:59 EST 
– Final Deadline: December 09, 2016 at 23:59 EST 

• Submission by e-mail to Lisul Islam (IU id: islammdl) 
– Submission Email Title: Project + Space + “Your Name” 
– Submission format: PDF from LaTeX 

 

 
 



Separating mixture of 𝑘 Gaussians 

• Sample origin problem:  
– Given samples from 𝒌 well-separated  spherical Gaussians  

– Q: Did they come from the same Gaussian? 

• 𝛿 = distance between centers 

• For two Gaussians naïve separation requires 

𝛿 > 𝜔 𝒅𝟏/𝟒  

• Thm. 𝛿 = Ω(𝒌
1

4)  suffices 

• Idea:  
– Project on a 𝒌-dimensional subspace through centers  

– Key fact: This subspace can be found via SVD 

– Apply naïve algorithm 



Separating mixture of 𝑘 Gaussians 
• Easy fact: Projection preserves the property  of 

being a unit-variance spherical Gaussian 

• Def. If 𝑝 is a probability distribution, best fit line 
*𝑐𝒗, 𝑐 ∈ ℝ+ is: 

𝒗 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝒗 =1 𝔼𝒙∼𝑝  𝒗
𝑻𝒙
𝟐

 

• Thm: Best fit line for a Gaussian centered at 𝝁 
passes through 𝝁 and the origin 

 

 

 



Best fit line for a Gaussian 
• Thm: Best fit line for a Gaussian centered at 𝝁 

passes through 𝝁 and the origin 

𝔼𝒙∼𝑝  𝒗
𝑻𝒙
𝟐
= 𝔼𝒙∼𝑝  𝒗

𝑻 𝒙 − 𝝁 + 𝒗𝑻𝝁
𝟐

 

= 𝔼𝒙∼𝑝 𝒗
𝑻 𝒙 − 𝝁 𝟐 + 2(𝒗𝑻𝝁)𝒗𝑻 𝒙 − 𝝁 + (𝒗𝑻𝝁)2  

= 𝔼𝒙∼𝑝 ,𝒗
𝑻 𝒙 − 𝝁 𝟐- + 2(𝒗𝑻𝝁)𝔼𝒙∼𝑝,𝒗

𝑻 𝒙 − 𝝁 - + (𝒗𝑻𝝁)2 

= 𝔼𝒙∼𝑝 ,𝒗
𝑻 𝒙 − 𝝁 𝟐-  + (𝒗𝑻𝝁)2 

= 𝜎2 +(𝒗𝑻𝝁)2 

• Where we used:  

– 𝔼𝒙∼𝑝,𝒗
𝑻 𝒙 − 𝝁 - = 𝟎 

– 𝔼𝒙∼𝑝,𝒗
𝑻 𝒙 − 𝝁 𝟐- = 𝜎2 

• Best fit line maximizes  (𝒗𝑻𝝁)2 
 

 

 



Best fit subspace for one Gaussian 

• Best fit 𝑘-dimensional subspace 𝑽𝑘: 

𝑽𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑽:𝑑𝑖𝑚 𝑽 =𝑘

𝔼𝒙∼𝑝  𝑝𝑟𝑜𝑗 𝒙, 𝑽 𝟐

𝟐
 

• For a spherical Gaussian 𝑽 is a best-fit 𝑘-
dimensional subspace iff it contains 𝝁 

• If 𝝁 = 0 then any 𝑘-dim. subspace is best fit 

• If 𝝁 ≠ 0 then best fit line 𝒗 goes through 𝝁 
– Same greedy process as SVD projects on 𝒗 

– After projection we have Gaussian with 𝝁 = 0 

– Any (𝑘 − 1)-dimensional subspace would do 



Best fit subspace for 𝑘 Gaussians 

• Thm. 𝒑 is a mixture of 𝑘 spherical Gaussians ⇒ 
best fit 𝑘-dim. subspace contains their centers 

• 𝑝 = 𝑤1𝒑1 +𝑤2𝒑2 +⋯+𝑤𝑘𝒑𝑘 

• Let 𝑽 be a subspace of dimension ≤ 𝑘 

𝔼𝒙∼𝒑 𝑝𝑟𝑜𝑗 𝒙, 𝑽 𝟐

𝟐
= 𝑤𝑖

𝑘

𝑖=1

𝔼𝒙∼𝒑𝒊 𝑝𝑟𝑜𝑗 𝒙, 𝑽 𝟐

𝟐
 

• Each term is maximized if 𝑽 contains all 𝝁𝒊
′𝑠  

• If we only have a finite number of samples then 
accuracy has to be analyzed carefully 



HITS Algorithm for Hubs and Authorities 

• Document ranking: project on 1st singular vector  

• WWW: directed graph with links = edges 

• 𝒏 Authorities: pages containing original info 

• 𝒅 Hubs: collections of links to authorities 
– Authority depends on importance of pointing hubs 

– Hub quality depends on how authoritative links are 

• Authority vector: 𝒗𝒋, 𝑗 = 1,… , 𝒏: 𝒗𝒋 ∼  𝒖𝑖𝑨𝑖𝑗
𝒅
𝑖=1  

• Hub vector: 𝒖𝒊, 𝑖 = 1,… , 𝒅: 𝒖𝒊 ∼  𝒗𝑗𝑨𝑖𝑗
𝒏
𝑗=1  

• Use power method: 𝒖 = 𝑨𝒗, 𝒗 = 𝑨𝑻𝒖 

• Converges to first left/right singular vectors 



Exercises 

• Ex. 1: 𝐴 is 𝑛 × 𝑛 matrix with orthonormal rows 

– Show that it has orthonormal columns 

• Ex. 2: Interpret the left and right singular 
vectors of the document x term matrix 

• Ex. 3. Use power method to compute singular 
values of the matrix: 

1 2
3 4

 

 


