CSCI B609:
“Foundations of Data Science”

Lecture 8/9: Faster Power Method
and Applications of SVD

Slides at http://erigory.us/data-science-class.html

Grigory Yaroslavtsev
http://grigory.us



http://grigory.us/
http://grigory.us/data-science-class.html
http://grigory.us/data-science-class.html
http://grigory.us/data-science-class.html
http://grigory.us/data-science-class.html
http://grigory.us/data-science-class.html

Faster Power Method

PM drawback: AT A is dense even for sparse A

Pick random Gaussian x and compute B*x

X = d 1 Civi(augment v;’s to o.n.b. if r < d)

Bx ~ (ot v,v]) (XL, civ;) = offcivy
B x = (ATA)(ATA) ... (ATA)x

Theorem: If x is unit Rd-vector, IxTv1| => 0:
— V = subspace spanned by v;s for g; = (1 — €)o;

1

) iterations of PM
€d

— W = unit vector after k = z—ln(

— w has a component at most € orthogonal to V




Faster Power Method: Analysis

« A=Y"_ouv andx =YL, c;v;

» Bfx =3 o vl Y5, vy = T, o v,
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Choice of x

y random spherical Gaussian with unit variance

y .
Iyl],

x:

11 1

Pr|laxTv| < < — 4 3e~d/64
x| 20/d| ~ 10

Pr ”Iyl‘2 = 2\/3 < 3¢~d/64 (Gaussian Annulus)

y'v ~ N(0,1) = Pr “yT H — <1_o

1

Canset 6 = AL the “faster power method




Singular Vectors and Eigenvectors

Right singular vectors are eigenvectors of AT A

o are eigenvalues of ATA

Left singular vectors are eigenvectors of AA”
AT A satisfies Vx: x'Bx > 0

-B =3Y,0fvv;

—vx: xTvw] x = (xTv;)?=> 0

— Such matrices are called positive semi-definite

Any p.s.d matrix can be decomposed as AT A



Application of SVD: Centering Data

Minimize sum of squared distances from A; to S;,
SVD: best fitting S, if data is centered
What if not?

Thm. S, that minimizes squared distance goes
through centroid of the point set:

1 5

n l
Will only prove for k = 1, analogous proof for
arbitrary k (see textbook)



Application of SVD: Centering Data

Thm. Line that minimizes squared distance goes through the centroid
Line: £ = a + Av; distance dist(A;,¥)

14; — al|; = dist(4;,£)* + (v,4;)
Center so that };i; A; = 0 by subtracting the centroid

Z’{‘dist(Al,{’)z— (14 - | — (v, A4;)?)

Z(||Al|| +lal]} - 245, @) - (v,4)?)

||A,|| +n||a|| —2() A;,a)— ) (v,A;)?
) WIS
Z||A,|| +n|lall; Z(v 4,7

e Minimized when a =



Principal Component Analysis

n X d matrix: customersXxXmovies preference

n = #customers, d = #movies

A;; = how much customer i likes movie j

Assumption: A;; can be described with k factors

— Customers and movies: vectors in u; and v; € R”

— A = (U, vj)

Solution: 4,

customers

(

factors

U

)

movies

()



Class Project

* Survey of 3-5 research papers

— Closely related to the topics of the class
* Algorithms for high-dimensional data
* Fast algorithms for numerical linear algebra
 Algorithms for machine learning and/or clustering
e Algorithms for streaming and massive data

— Office hours if you need suggestions

— Individual (not a group) project

— 1-page Proposal Due: October 31, 2016 at 23:59 EST
— Final Deadline: December 09, 2016 at 23:59 EST

e Submission by e-mail to Lisul Islam (IU id: islammdl)
— Submission Email Title: Project + Space + “Your Name”
— Submission format: PDF from LaTeX



Separating mixture of k Gaussians

Sample origin problem:
— Given samples from k well-separated spherical Gaussians
— Q: Did they come from the same Gaussian?

0 = distance between centers

For two Gaussians naive separation requires
§ > w(d/*)

1
Thm. 6 = Q(k4) suffices
Idea:
— Project on a k-dimensional subspace through centers

— Key fact: This subspace can be found via SVD
— Apply naive algorithm



Separating mixture of k Gaussians

* Easy fact: Projection preserves the property of
being a unit-variance spherical Gaussian

* Def. If p is a probability distribution, best fit line
{cv,c € R}is:

2_

* Thm: Best fit line for a Gaussian centered at u
passes through u and the origin




Best fit line for a Gaussian

* Thm: Best fit line for a Gaussian centered at u
passes through u and the origin

E,., [(vTx)zl = Ex, [(vT(x — @)+ vTﬂ)2]
= Exp [vV (0 =) + 200" V" (x — ) + (v")? |
= Exp [V (x = %] + 20" I Exp [v" (x — )] + (v )’
= Ex~p VT (x — 2] + (")’
=0’ +(v'w)?
* Where we used:
~ Exp[v'(x -] =0
— Exp[v'(x —)?] = 0°

* Best fit line maximizes (v u)?




Best fit subspace for one Gaussian

Best fit k-dimensional subspace V,:
_ 2
Vk = argmax IEx~p ” |p7‘0] (x, V)”2]
V:dim(V)=k
For a spherical Gaussian V is a best-fit k-
dimensional subspace iff it contains u
If u = 0 then any k-dim. subspace is best fit

If u # 0 then best fit line v goes through u
— Same greedy process as SVD projects on v

— After projection we have Gaussian with g = 0
— Any (k — 1)-dimensional subspace would do



Best fit subspace for k Gaussians

 Thm. p is a mixture of k spherical Gaussians =
best fit k-dim. subspace contains their centers

* P =WwiPp1 t WPy + o+ WDy
* Let V be a subspace of dimension < k

k
b lroiGE] = 3 B [lroi e
=1

* Each term is maximized if V contains all u;s

* If we only have a finite number of samples then
accuracy has to be analyzed carefully



HITS Algorithm for Hubs and Authorities

 Document ranking: project on 15t singular vector
* WWW: directed graph with links = edges
* n Authorities: pages containing original info

* d Hubs: collections of links to authorities
— Authority depends on importance of pointing hubs

— Hub quality depends on how authoritative links are
d

e Authority vector: v]-,j =1,..,n: Vj ~ i=1uiAij
* Hubvector:u;, i =1,..,d:u; ~ Yj_1 VjA;j
 Use power method: u = Av,v = ATu

* Converges to first left/right singular vectors



Exercises

e Ex.1: A isn X n matrix with orthonormal rows

— Show that it has orthonormal columns

* Ex. 2: Interpret the left and right singular
vectors of the document x term matrix

* Ex. 3. Use power method to compute singular
values of the matrix:
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