Homework 4: December 04

Name: YOUR NAME HERE

Due: Monday, December 11, 11:59pm EST

Fall 2017

Problem 4.1 (Sparse recovery) In this problem all vectors are in \mathbb{R}^n . Recall that the sparse recovery error is defined as:

$$Err^{k}(f) = \min_{g: \|g\|_{0} = k} \|f - g\|_{1}.$$

Give a formal argument that shows that $Err^k(f) = \sum_{i \notin S} |f_i|$ where S is the set of indices of k largest (by absolute value) entries of f.

Problem 4.2 (Dyadic intervals) Let n be a power of two. Consider the following family of partitions of the interval $1, \ldots, n$ into intervals:

$$I_0 = \{\{1\}, \{2\}, \dots, \{n\}\}\}$$

$$I_1 = \{\{1, 2\}, \{3, 4\}, \{5, 6\}, \dots, \{n-1, n\}\}$$

$$I_2 = \{\{1, 2, 3, 4\}, \{5, 6, 7, 8\}, \dots, n-3, n-2, n-1, n\}$$

$$\dots$$

$$I_{\log n} = \{\{1, \dots, n\}\},$$

where the partition I_k consists of intervals of length 2^k . Show that any subinterval i, \ldots, j where $i \leq j$ can be represented as a disjoint union of at most $2 \log n$ intervals from the above family.

Problem 4.3 (Generating uniform distribution) Given a stream of numbers a_1, \ldots, a_n where each number is an integer between 1 and m design an algorithm that scans the stream and at every point during the scan maintains a uniformly at random chosen sample of k numbers from the stream. Your algorithm should use space $O(k \log m)$.

Problem 4.4 (Bipartiteness via connectivity) Consider the following reduction: given a connected undirected graph G(V, E) construct a new graph $G'(V_1 \cup V_2, E')$ where V_1 and V_2 are copies of V and for each edge $(u, v) \in E$ we create two edges (u_1, v_2) and (u_2, v_1) where u_i and v_i are copies of u and v in V_i . Prove the following two statements:

- 1. If G is bipartite then the number of connected components in G' equals 2.
- 2. If G is non-bipartite then G' is connected.